Best CubeSat Deorbit Options for 25-Year Orbit Lifetime

- CubeSat ballistic coefficients fall into a narrow range (see graph)
- **No reentry device needed below ~700-km**
- Balloon is best option for altitudes between 700 and 900-km
- Propulsion followed by balloon deployment is best for altitudes between 900 and ~1400-km
- Direct reentry burn for altitudes above ~1400 km (no need to “stop” at 900 km to deploy a drag device)

Drag enhancement up to 900 km but propulsion is required above that.
Balloon Subsystem Constituents

Four parts to a deorbit balloon subsystem: tank, fill tube, balloon, enclosure
Balloons: What a Drag!

- Each oxygen atom that hits the balloon imparts an impulse:
 \[M_{\text{oxygen}} \times V_{\text{relative}} \sim 2 \times 10^{-22} \text{ N-s} \]

- Each oxygen atom that hits the balloon also removes some Kapton:

 \[4.3 \times 10^{-24} \text{ grams/oxygen atom} \]

- Mass loss is therefore roughly proportional to total impulse:

 \[1\text{-gram Kapton} \sim 47 \text{ N-s impulse} \]

- Required impulse to reach 200-km “burnup” altitude is a function of starting altitude and spacecraft mass, e.g., 430 N-s for a 1-kg Cubesat initially at 1000-km

![Diagram of incoming oxygen atoms and balloon](image)

Mass loss due to atomic oxygen erosion is a function of spacecraft mass and initial altitude, not balloon size.
Step 1: Quantifying Balloon Erosion

- Kapton mass loss for a 1-kg mass spacecraft is a function of starting altitude (see chart).
- For other spacecraft masses, multiply chart result by spacecraft mass in kilograms.
- Aluminized materials will fare better, but cracks in aluminum from packing, will expose the polymer.
- Total projected area and geometric configuration (disk, sphere, etc.) due not influence mass loss to first order.

A “1U” CubeSat Kapton drag device must lose 6-grams in order to drop from 700-km to a 200-km terminal altitude.
Step 2: Deorbit Rate: Sizing the Balloon

• Projected area determines the rate of descent, and hence orbital lifetime
 - *Complex calculations include atmospheric density as a function of altitude and time*

• Use 25-year results presented in chart at right
 - *Projected area is important, not total surface area*

• Use larger projected area for faster deorbit
 - *Mass loss is unaffected by increased area because total exposure time to oxygen is reduced*

Example: A 0.5-meter diameter drag device composed of 0.004” thick Kapton will deorbit a 1U CubeSat from 1000-km altitude in less than 25 years.
Step 3: Balloon wall thickness OR larger balloon

• Kapton thickness can be calculated from **required** projected area and Kapton mass loss (plotted on previous chart)

 - *Kapton thickness should be larger than the calculated erosion depth to provide material margin*

• A larger balloon, **but with the same mass** as calculated in Step 2, will decrease de-orbit time.

 - *Thinner Kapton required*

Thicker walled smaller balloon or thin walled larger balloon = SAME eroded mass
You don’t need much pressure, or inflation material, to fill a balloon on-orbit.

Step 4: How much to fill

- Store a saturated liquid
 - Try SUVA 236fa
 - Valve will need neoprene seals

- Expansion ratio ~10,000:1
 - 0.1 cc liquid will fill 0.1m³ balloon
 - 15 Pa pressure inside balloon (Enough to expand a 2’ dia., ~0.1-m³ balloon)
AeroCube Deorbit Balloons

- Kapton balloon 8-mils thick
- 23-cm pillow shape
- Balloon subsystem vol = 103-cm³
- Balloon subsystem mass = 110-g
- Balloon avg cross section = 0.05-m²
- Satellite died after 1 day – did not deploy or inflate balloon
- Ballistic Coefficient = 0.1-m²/kg

- Mylar balloon 1-mil thick, aluminized
- 0.6-m diameter
- Balloon subsystem vol = 155-cm³
- Balloon subsystem mass = 117-g
- Balloon avg cross section = 0.28-m²
- Balloon deployed but did not inflate
- Ballistic Coefficient = 0.5-m²/kg

Inflating balloons is harder than it looks
Example #1: The AeroCube-2 Balloon

- Geometry: Pillow-shaped (square)
 - Simple to build and stow
- Material: Kapton film + Kapton tape
 - Good thermal properties
- Benefits
 - Self-rigidizes with aluminum strips
 (Gas loss due to micrometeoroid punctures is thus not an issue)
 - Incorporates a “Tape Valve” to relieve excess pressure during fill
 - Fill-tube made of heat-shrink, covered and joined to balloon with Kapton tape
- Drawbacks
 - Erosion by atomic oxygen
 - Asymmetric cross section

The AeroCube-2 balloon was Kapton
Example #2: The AeroCube-3 Balloon

- Geometry: Round
 - Uniform cross section
- Material: Aluminized Mylar
 - Runs hot
- Benefits
 - Sealed using industry method (party balloons) of melting inside polyethylene layers
 - Thinner and more flexible material (thus larger balloon)
 - Resistant to atomic oxygen
- Drawbacks
 - Need special machines to make
 - Separate over-pressure valve
 - Hard to fold efficiently
 - Less self-rigidizing than AC2 thus more sensitive to micrometeoroid punctures

The AeroCube-3 balloon was larger but thinner
Tech Tip #1: 2-D Pressure Relief “Tape Valve”

- Passive relief of excess gas (to prevent bursting)
- Consumes very little volume, eliminates pressure regulator
- Easily integrated into pillow-style balloons
- Incorporated into the last fold of the balloon as it inflates
- Designed to open when the balloon has been pressurized to a specific geometry

A simple, inexpensive relief valve to prevent balloon over-inflation.
Tech Tip #1: 2-D Pressure Relief “Tape Valve” (Con’t)

- Tip of a corner is clipped to produce a hole (here about 10-mm)
- Tape is folded over hole, sealing it closed
- Tape is arranged to immobilize last fold until balloon is nearly inflated to its final shape
- Inflation pressure pulls tape to open valve as the last corner unfolds – by then the balloon is rigid

Once inflated, the relief valve remains open. Aluminum strips taped to the Kapton film maintain balloon shape.
Tech Tip #2: Balloon Packing

- Bulk usually comes from folds, not material thickness – stagger edges to reduce bulk for a given balloon size
- Avoid orthogonality where practical (don’t be square, exactly)
- Arrange folds in a “W” shape rather than rolling-up

Efficient balloon packaging requires some thought.
AeroCube 2 Balloon Fill Test (in vacuum)

0.1-cc of liquid @ 0° C will fill up a 2-ft diameter balloon to 15 Pa @ -40° C.
AC3 Balloon Deployed (nice to have a camera onboard)

Drag has increased by 2x. (An inflated balloon would have been 12x).
Conclusions & Acknowledgements

- Above 700 km, a deorbit device for CubeSats is required
- The balloon diameter will determine how quickly deorbit occurs
- Polymer eroded mass is constant
 - Quicker deorbit = less erosion depth over a larger balloon
 - Slower deorbit = more erosion depth over a smaller balloon
- Aluminized polymers will not erode but cracks are susceptible
- A balloon subsystem typically has four main parts

- We thank The Aerospace Corporation’s Independent Research and Development program for funding this work
- We thank SDTW for supporting the AeroCube-3 launch