CubeSat Developments and Future Challenges

ISIS – Innovative Solutions In Space
Abe Bonnema, Jeroen Rotteveel
CubeSat Summer Workshop 2010, 08 August, Logan, Utah
Outline

• Company history
• Company overview
• Milestones of the past year
• Current activities
• What does the future hold … ?
November 2004 - Delfi-C3 Starts

- 4th Dutch Satellite after ANS, IRAS and SloshSat
- 1st Dutch university satellite to be actually launched into orbit (28 April 2008)
- Project largely run by students
- Industry payloads
April 2005 – the idea was born
Why start a space company?

"The way to make a small fortune in space is to start with a big fortune.

Space is a good place to lose a lot of money real fast."

John Pike
American Federation of Scientists
January 6, 2006 – ISIS founded
March 2006 – Office at YES!Delft Incubator
At the time: 18 m2 for 5 engineers (founders)

May 2008 – New office at Rotterdamseweg 380
At the time: about 200 m2 for ~10 engineers (incl. management)
July 2009 – initiated two daughter companies

Name: Innovative Space Logistics BV
Goals: All-in Launch Services for Small, Auxiliary Payloads

Name: Innovative Data Services BV
Goals: Full Service Applications with nanosatellites

July 2010 – New office with more lab space
About 400 m2 for ~20 engineers (excl. management)
Company Overview

• Spin-off of Delfi-C3 nanosatellite project of TU Delft
• Founded January 06, 2006
• Office locations:
 – Delft, near Delft University of Technology Campus
 – Noordwijk, in the European Space Incubator at ESTEC
• Current team: 20+ engineers, plus management, support
• Fully owned by the management team:

 Jeroen Rotteveel
 Managing Director

 Abe Bonnema
 Marketing Director

 Wouter Jan Ubbels
 Technical Director

 Eddie van Breukelen
 Financial Director
Company Structure

- Separate 'business units' for:
 - Missions, Platforms, Custom systems
 - Off-the-shelf systems from CubeSat system developers
 - Small Satellite Launch Services
 - Nanosatellite Applications
Milestones over the past year

- Successful launch campaign (ISILaunch01)
Milestones over the past year

- involvement in ESA's nanosatellite research projects
- OTS-products successfully demonstrated in orbit (e.g. Antenna system on STUDSat)

- Move to a new building:
 - Clean room 80m2
 - Operations room and Ground Station
 - doubled our lab space
 - building up end-to-end in-house environmental test facility line
Current Activities

• Ongoing Product Developments:
 – Communication Systems (UHF, VHF, S-Band)
 – ISIPOD Deployer systems in various form factors (e.g. 6-Pack)
 – Test & Ground Support Equipment Kits

• Ongoing CubeSat R&D Projects:
 – Track & Trace payloads (with Dutch partners)
 – Miniaturized Star trackers (with TNO)
 – Deployable Solar Arrays (with Dutch Space)
 – Cool Gas microPropulsion Module (with TNO / Bradford)
 – Modular Payload Deck Elements (with Stork/Fokker/Mecon)
Current Activities

• Ongoing Missions & Platforms:
 – Triton-1 Tech Demo Mission (with SystematIC / NLR)
 – Triton-2 AIS Demo Mission (with ClydeSpace / GomSpace)
 – FUNcube Platform and MAIV (for AMSAT UK)
 – De-Orbit Sail Demo Mission (EU project with SSC, DLR, ASTRIUM, Universities in Greece, Turkey, South Africa)
 – Delfi-n3Xt (Payload Partner of TU Delft)
 – 2U environmental monitoring mission (undisclosed customer)
Current Activities

• Ongoing Studies / Involvement in Programs
 – IDS / CubeSat SAT-AIS constellation (in house)
 – QB50 (VKI)
 – OLFAR (TU Delft, UTwente, ASTRON, SME's)
Knowing where *you* are is not enough
Knowing where *you* are is not enough

Solution:
Cell phone cell density and radio feeds to locate congested areas

Additional Requirements:
- Cellular phones, GSM Antenna stations
- Car Radios, traffic information broadcasts
Knowing where you are is not enough

Solution:
Cell phone cell density and radio feeds to locate congested areas

Additional Requirements:
- Cellular phones, GSM Antenna stations
- Car Radios, traffic information broadcasts
Knowing where *you* are is not enough

Solution:
Cell phone cell density and radio feeds to locate congested areas

Solution:
IMO mandated transponder system improves local information needs for safety

Additional Requirements:
- Cellular phones, GSM Antenna stations
- Car Radios, traffic information broadcasts

Additional Requirements:
- AIS transponders on ships (since 2007)
- Reception stations (coastal and in space)
Implementation

- **Space Segment**
 - S-AIS Receivers
 - 16 Spacecraft
 - Launch into 4 orbits

- **Ground Segment**
 - 4 Ground Stations
 - 1 Operations Center
 - 1 Data Center
 - Distribution channels
“An international network of 50 double CubeSats for multi-point, in-situ, long-duration measurements in the lower thermosphere and for re-entry research.”

- Consortium led by VKI – Von Karman Institute (J. Muylaert)
- Supported by space agencies

- ISIS involved for:
 - Satellite Platform Technical Advice
 - Launch Configuration and Orbit Dynamics Analysis
 - Payload Deck, Deployment System and Integration Support
 - Launch Campaign Support
Advanced Application - OLFAR

• OLFAR is a new concept of a low frequency radio telescope in space using small satellites.
• Correlation must be done in space.
• Distributed processing with centralized downlink transmission is the preferable option.
• Inter satellite link is the communication challenge.

5 major subsystems:
• spacecraft
• antenna design
• frontend
• backend
• data transport
CubeSatShop.com

• Objectives:
 – One-stop-shop for all your off-the-shelf CubeSat systems
 – Single portal for questions and system comparison
 – Ultimate goal: CubeSat configurator interface

• Partners (new partner/products always welcome)
CubeSatShop.com

• Current range of products already extensive:
 – Structures, mechanisms, deployers
 – Comm systems, antenna systems, ground stations
 – Power systems, batteries, solar panels
 – Attitude control systems, computers, camera
 – Standard kits and support equipment

• Opportunities and Needs:
 – The ‘big gaps’ (examples): GPS, CMGs, DPUs
 – Additional needs: cameras, payload systems, etc.
Some challenges for the future

• Frequencies and downlink of data, operations:
 – Amateur frequencies
 • Need for improved coordination?
 • Re-use / sharing of frequencies?
 – Networks of CubeSats
 • How do you coordinate 25+ Cubes deployed at the same time (e.g. QB50)?
 • Scheduling (TDMA)?
 – Shared ground stations
 • Licensing & regulatory aspects?
 • Training of operation?
 • Data policies?
Some challenges for the future

- Improved Cooperation
 - Develop your strengths, do not re-invent the wheel
 - Regulatory issues and restrictions
 - E.g. ITAR vs non-dependence movement in Europe
 - Licensing
 - IPR issues in cooperation between parties
 - Industry / Industry: competitors vs. partners
 - Industry / Academia: risk your IPR to become public domain
 - Academia / Industry: risk of not being allowed to publish your work
 - Industry / government: risk w.r.t. IPR ownership
Some challenges for the future

• Improve access to space
 – Launches are **not** cheap
 • Launch fees
 • Testing and procedures
 • Campaign cost
 – More often regulations apply
 (e.g. national space laws, NOAA, ITU/FCC)
 – Do not underestimate the level of testing and prove of conformance required by the LSP
 – Take into account end-of-life
Some challenges for the future

• Standardization and modularity
 – CubeSat Standard, universally adopted?
 • Depends very much on the type of deployer used for things like envelope, mass, etc
 • Variations on CubeSats are not very well covered
 • Mostly covers form, fit, mechanical aspects

 – Standardization of internal interfaces:
 • No real solution or consensus (mech, data, power, etc)
 • If you say: “we use our own standard”, it’s not a standard.
 • Commercial CubeSat systems providers struggle with this quite a bit…
Thank you for your attention!

Let’s discuss your needs …

ISIS - Innovative Solutions In Space BV

Rotterdamseweg 380
2629 HG, Delft
The Netherlands
+31 15 256 9018
info@isispace.nl
www.isispace.nl

Molengraaffsingel 12-14
2629 JD, Delft,
The Netherlands
+31 15 256 9018
info@isispace.nl
www.isispace.nl

01 August 2010