Overview

- APL is providing active support for the CubeSat community
 - Advocacy for CubeSat/nanosatellite secondary payloads on missions in which APL is involved
 - Provide facilities at reduced or no cost
 - Mentoring/advising
 - Sponsor student interns
- APL is pursuing three paths for CubeSat involvement
 - Externally sponsored “high” value missions
 - Internally sponsored technology/concept demonstration missions
 - Donated payloads to CubeSat missions
“High” Value Missions

- Educating APL staff on CubeSat capabilities
 - Foster development of concepts that can meet sponsors’ critical challenges
- Evaluating the potential of CubeSats in the upcoming NASA SMEX AO
Internally Sponsored Technology/concept Demonstration Missions

- Initiated FY07 IRAD project
 - Held open call for CubeSat payload/mission ideas
 - Selected three concepts for further study
 - Met with numerous members of the CubeSat community to better understand capabilities and costs
 - Very interested to meet with other CubeSat providers during this conference
- Downselect planned for early September 2007
- High probability of a program start in FY08
- Three concepts
 - MEMS space weather sensor
 - Space networking
 - Proximity operations
Donated Payloads to CubeSat Missions

- APL is developing numerous technologies that would benefit from space flight
- Payloads would be donated to interested CubeSat teams
- Sample of technologies presented here
 - Complete package available upon request
Micro Liquid Pulsed Plasma Thrusters

- Water-fueled (current prototype)
- Arrays of thrusters possible in small, lightweight polyimide structures
- High Isp for efficient propellant utilization

- Fabricated using printed circuit board techniques
- Moderate voltages (~600V) simplify power processing electronics

Dry mass: 13.5 g w/ integral tank
(~1 cc capacity adds 1 g)
Size: 2.5 cm x 2.5 cm x 1.3 cm
Power: 100 mW (1 Hz firings)
MEMS Inertial Sensor Suite

- 3-axis high-g accelerometer, 2-axis magnetometer, interface electronics on one 2.5 mm x 2.5 mm die
- Low-g accelerometer, gyro also fabricated with less integration
- Developed with MEMS lab at Carnegie Mellon University

<table>
<thead>
<tr>
<th>2-axis Magnetometer</th>
<th>3-axis High-g Accelerometer</th>
</tr>
</thead>
</table>

- Analog voltage outputs (e.g., 275 μV/g for high-g accelerometer)
- Volume: 0.5 cm³
- Power: 83 mW
- Accelerometer is hermetically packaged; magnetometer is vacuum packaged

![2-axis Magnetometer](image1)

![3-axis High-g Accelerometer](image2)

![Low-g Accelerometer](image3)

![Gyro](image4)
SPREAD and Spines Messaging Infrastructures

- Open-source infrastructures developed at JHU
- SPREAD toolkit for intra-spacecraft messaging:
 - Most effective for synchronizing multiple computing devices, distributed systems
 - Could run on top of 1553B, SpaceWire, and optical comm layers
 - Thousands of ground implementations, but no space demonstration
 - www.spread.org
- Spines for inter-spacecraft messaging:
 - Support for multi-hop mesh networks
 - Ideal for CubeSat constellations, swarms
 - Could also link satellites to ground station access
 - Demonstrated with 802.11 wireless routers
 - www.spines.org
Thermal Switch

- Switch becomes thermally conductive above threshold temperature
- Gap (vacuum) prevents thermal conduction below threshold
- Operates without active control; Heater used for demonstration

Mass: 25 g + radiator (~125 g)
Power: 3 W maximum for heater
Data: 2 temperatures, heater current
Size: 8.2 cm x 4.2 cm
Requires radiative panel
Prototyped in cooperation with Naval Academy

Thermal switch when open (top) and closed (bottom)
Disciplined Ultra-Stable Oscillator (USO)

- Provides time-tagging for sensor data down to 1 µsec resolution
- Referenced to GPS; only requires intermittent signal
- Up to 30 day autonomous timekeeping in LEO

Mass: 300 g*
Power: 3 – 5 W*
Volume: 200 cm³*

*Assumes packaging is integrated with bus
Requires GPS interface

USO based on proven APL technology; discipline has been laboratory demonstrated
MicroCam

- 1024 x 1024 pixels
- Monochrome
- Radiation hardened
- 1 Hz frame rate
- 10 ms to 0.5 s exposure time

Mass: 125 g without lens
Size: 6.25 x 5.4 x 4.95 cm
Power: 0.6 W
Data: 10.5 Mbits per frame; 10-bit LVDS raw output
Requires lens (C mount), clock, control, and power interfacing
MEMS Bolometer

- Bolometer measures total incident radiation
- Temperature (and resistance) of suspended element determined by blackbody radiation balance
- MEMS technology reduces size, power

Sensitivity of 7 nV/K, but 60 nV noise floor limits resolution to 9 K
Simple Interfacing (op-amps and ADC)
Summary

- APL is now actively engaging with the CubeSat community
- Open offer of assistance to CubeSat programs
- Considering use of CubeSats on high value science, technology, and concept demonstration missions such as SMEX
- Working to define an APL CubeSat program
 - In concert with a university partner
- Numerous technologies available for donation to CubeSat missions