Laser Communications Downlink and Crosslink Designs for Cubesats

Emily Clements
CalPoly CubeSat Workshop 2016
PI: Prof. Kerri Cahoy
Outline

• The Need for CubeSat Lasercom
 – Motivation
 – Key design trades
• Approach and Enabling Technologies
• Ongoing MIT Programs:
 – Nanosatellite Optical Downlink Experiment (NODE)
 – Freespace Lasercom And Radiation Experiment (FLARE)
 – KitCube
• The Future of CubeSat Lasercom
The Need for CubeSat Lasercom

- Transitioning to more advanced payloads requires higher data rates than UHF with tapespring antenna can provide [4]
- Transmit power and cost/accessibility of high-gain ground stations are usually the limiting factors in CubeSat RF data rate [5]
- Laser communication is more power-efficient than RF:
 - Channel capacity C scales with wavelength λ:
 \[
 \frac{C_{Opt}}{C_{RF}} \propto \left(\frac{\lambda_{RF}}{\lambda_{opt}}\right)^2
 \]

\rightarrow Lasercom is an attractive solution for future programs
- Ongoing compact lasercom work: Aerospace OCSD [15], Facebook [16], DLR [17], BridgeSat/Surrey, RUAG, MIT programs, & others
 - Related technology: CHOMPTT [20]
The need for CL

Approach/Enabling Tech

Ongoing Programs

Future of CL

Comm for Advanced LEO CubeSats

- Figure assumes payloads are running continuously & downlink is not limited by number or duration of passes
- High-power, high-data payloads drive need for CubeSat Lasercom
Lasercom Pointing Challenges

• Key challenge: **pointing control**
 - Lasercom beamwidths test limits of CubeSat attitude control with Earth Horizon Sensors (EHS) & Sun Sensors (SS)

• We will discuss solutions MIT CubeSat lasercom programs:
 - NODE: LEO downlink [2]
 - FLARE: Crosslinks in LEO
 - KitCube: Downlink from lunar orbit [18]
COTS for CubeSat Lasercom

Transmitter electronics leverages telecom technology
Credit: Ryan Kingsbury [2]

- **FPGA**
- **Seed Laser + ER Filter**
- **EDFA**

Space terminal pointing control enabled by COTS
Fast Steering Mirror (FSM)
Credit: Kathleen Riesing

Selected COTS tech architecture with amplification using EDFA to enable low cost (<$20k in parts cost) system scalable to 100 Mbps

MIT Ground station uses
Amateur Telescope and laptop
Credit: Hyosang Yoon
Developing new link analysis approach to handle system uncertainties:

- COTS parts not yet qualified for space environment
- Traditional, worst-case link analysis is too conservative for risk-tolerant CubeSats
- Probabilistic modeling approach to lasercom link budgets helps to assess risks
→ **How to address uncertainties:** Use global sensitivity analysis to identify uncertainties with highest impact on Link Margin

- Global sensitivity analysis helps to visualize contributors to performance uncertainty

![Bar Chart]

- **Pointing Loss**
- **Implementation Loss**
- **Tx Optics Loss**
- **Rx Optics Loss**

Clements 2016
NODE Overview

- **Nanosatellite Optical Downlink Experiment**
- 10-100 Mbps downlink from LEO CubeSat w/ 1550 nm, 2.26 mrad beam
- <10 W consumed power for 0.2 W transmit power
- Leverages COTS parts for transmitter and receiver

Transmitter
- Electronics: Commercial telecom laser components, PPM modulation
- Mechanical: 3D printed structure
- Pointing strategy: bus pointing (coarse pointing), Fast steering mirror (fine pointing)
- Components in two submodules

Receiver
- OCTL and Amateur telescope
- Detector: COTS avalanche photodiode
- Pointing and tracking: COTS infrared camera + star tracker

Transmitter
- EDFA submodule
- Optics submodule

Transmitter
- 120 mm

Credit: Hyosang Yoon

CAD Credit: Derek Barnes
NODE I&T Progress Update

Mechanical Prototyping

FSM & Transmitter Prototyping

Ground Station Prototyping

Functional Testing

Photo credit: Clements
Prototyping: Aniceto, Barnes, Clark, Haughwout

Photo credits: Clements
Prototyping: Aniceto, Barnes, Clark, Haughwout

Photo credit: Clements
GS lead: Hyosang Yoon

Photo credit: Clements
Prototyping: Ziegler, Lee

The need for CL
Approach/Enabling Tech
Ongoing Programs
Future of CL
Freespace Lasercom and Radiation Experiment
- Intersatellite laser communications with CubeSats
- Two satellites, compact half-duplex transceiver system
- MIT’s entry into the AFRL UNP-9 competition
- Pre-PDR
KitCube Mission Overview

Program Objectives

- MIT’s entry into the NASA CubeQuest Challenge
- Design and build a 6U CubeSat that wins one of the 3 remaining spots on SLS EM-1.
- Achieve lunar orbit ($1.5 M)
- Goal of winning the Best Burst Data Rate competition with a laser communications downlink transmitter.
- Also compete for largest aggregate data volume, and longevity.

Lasercom payload:
- 1550 nm 1.2 W transmitter
- 0.1 mrad beam
- Beacon receiver

Pointing solutions:
- Reaction wheels
- Two star trackers

CAD Credit: Maxim Khatsenko
The Future of CubeSat Lasercom

Upcoming Tech Demo Missions
(MIT examples; many others exist)

LEO downlink
MIT example: NODE
>50 Mbps with 0.2 W transmitter & 1 m ground station
Other examples: Aerospace OCSD, CHOMPTT

LEO crosslink
MIT example: FLARE
>10 Mbps with 1.2 W transmitter

Lunar downlink
MIT example: KitCube
>1 Mbps with 1.2 W transmitter

Future Architectures

LEO downlink
½ U payload & ground station network would enable higher duty cycles of advanced CubeSat payloads

LEO crosslink
Low-power crosslinks reduce latency of downlinking payload data

Deep space
CubeSats could be used as probes on interplanetary missions (ex. Starshot), with the communication ability to relay findings back to Earth
Acknowledgements

Students (past and present)

Graduate Students
Inigo del Portillo Barrios
Kate Cantu
Ashley Carlton
Jim Clark
Emily Clements
Angie Crews
Karl Gantner
Christian Haughwout
Ayesha Hein
Kit Kennedy
Maxim Khatsenko
Ryan Kingsbury
Charlotte Lowey
Myron Lee
Zach Lee
Weston Marlow
Kat Riesing
Armen Samurkashian
Divya Shankar
Hyosang Yoon
Caleb Ziegler

Undergraduate Students
Raichelle Aniceto
Derek Barnes
Scarlett Koller
Bjarni Kristinsson
Rachel Morgan
Maya Nasr
Johannes Norheim
Elisheva Shuter
Rachel Weinberg

High School Students
Braden Oh + Project Selene team

Advisors
Professors
Kerri Cahoy

Mentors
Jamie Burnside
Dave Caplan (MITLL)
Bill Farr (NASA JPL)
Zach Hartwig (MIT Post-doc)
Jeff Mendenhall (MITLL)
Jonathan Twichell (MITLL)
References

7. Anne Marinan, Personal Communication
18. https://crowdfund.mit.edu/project/1501
Backup Slides
PPM Diagrams

Credit: Laser Communication Transmitter and Receiver Design by Dave Caplan

Credit: Ryan Kingsbury
Abstract

"Laser Communications Downlink and Crosslink Designs for CubeSats”

Optical communication, or lasercom, can provide much higher link rates than an RF system with comparable energy consumption. This is because optical signals can be directed more effectively towards the ground station. The main engineering costs associated with these systems are the stringent pointing requirements that are levied on the laser transmitter. Recent advances in CubeSat attitude determination and control systems (ADCS) are addressing these needs, and there have been several missions that have demonstrated three-axis stabilization – a key enabler for lasercom.

We discuss developments in laser communications capabilities for downlink and crosslink on 3U and 6U nanosatellite platforms and ground stations based largely on commercially available components. We present predicted and prototyped capabilities of spacecraft transmitters and receivers for a power-constrained 1550 nm direct-detection system with average output power ranging from 200 mW to 1.2 W for three case studies: low-Earth orbit downlink, low-Earth orbit crosslink, and deep space downlink. We describe expected performance for a representative orbital configurations, including consideration of propulsion and pointing capability, as well as ground station geometries for these case studies. Passive and active beacon approaches are also considered. The case studies capture ongoing work at MIT on the Nanosatellite Optical Downlink Experiment (NODE), the MIT KitCube entry in the NASA CubeQuest Lunar Derby Challenge, and the Free-space Lasercom and Radiation Experiment (FLARE) in the University Nanosatellite Program 9.

Lasercom has the potential to unlock large amounts of bandwidth at optical wavelengths even for resource-constrained CubeSat platforms. The highly directed nature of the optical links make them extremely difficult to intercept and jam resistant. These same link parameters also support extensive spatial reuse of carrier frequencies. We use onboard memory storage to address weather/availability concerns for using optical transceivers for ground uplink and downlink. Many missions do not have “real-time” downlink latency requirements, so data can be stored onboard until a ground station is available. Applications with more stringent latency requirements can field additional geographically diverse ground stations, particularly if the ground stations are compact and low-cost.