

OCSD-A / AeroCube-7A Status Update

Darren Rowen
Richard Dolphus
Patrick Doyle
Addison Faler

Microsatellite Systems Dept. April 20, 2016

Agenda

- Concept of Operations Overview
- Spacecraft Configuration
- Software Update Anomaly Overview
- Software Architecture Design Modifications
- Star Tracker Checkout & Analytical Results
- 10MP Imager Test Images

OCSD Concept of Operations Overview (1/2)

- The mission includes the following primary objectives:
 - The CubeSat shall demonstrate an optical downlink at 5 megabits per second.
 - Two CubeSats shall demonstrate passive and active orbital rephasing maneuvers to bring them within 200 meters of each other.
 - One CubeSat shall demonstrate tracking of the other.
- These objectives are to be completed by a pair of 1.5U Cubesats: OCSD-B & OCSD-C to be launched in the summer of 2016
- OCSD-A demonstration added in 2015 as an additional mission to buy down risk for the mission of record
 - ACS verification and pointing accuracy goals
 - Laser and other subsystems verification
 - Laser Downlink CONOPS refinement
 - Calibration procedure & tool refinement

OCSD Concept of Operations Overview (2/2)

- A software update anomaly disabled the attitude control main processor, which results in the following loss of functionality:
 - Inability to control the spacecraft attitude or spin rate
 - Inability to communicate with or operate the laser downlink communication payload
 - Inability to communicate with or operate the laser range finder payload
 - Inability to propagate & estimate the spacecraft attitude in real-time
 - Note that discrete attitude solutions using the star tracker are possible, but only when the tracker happens to be pointed in a favorable orientation
- OCSD-A Still Reduces Risk for the primary mission, although a sub-set of the risk reduction objectives can not be accomplished:
 - ACS verification and pointing accuracy goals (Partial, limited to Star Tracker Checkout)
 - Laser and other subsystems verification (Other subsystems can be tested: Power, Camera, GPS, Radio, Deployment Mechanisms)
 - Laser Downlink CONOPS refinement
 - Calibration procedure & tool refinement (Partial, limited to Star Tracker Checkout)

OCSD Spacecraft Configuration

Star Cameras

1 Earth Horizon Sensor, 1 retroreflector, and 1 Sun Sensor

OCSD-A Software Update Anomaly Overview

- The ACS main microcontroller was rendered permanently unresponsive during a software update. While this issue could have been identified prior to upload, the ground pre-upload verification process was not perceptive enough to catch the problem.
- The verification procedure at the time was to program an engineering unit to match the flight configuration then load the update and verify a match to the desired program binary post update.
- Pre-upload ground simulation did not exactly match actual upload process
 - Flight upload was loaded incrementally over several ground contact periods
 - Between ground contacts, the vehicle executed a regularly scheduled power-cycle
 - The power-cycle process re-booted the ACS processor into a partially updated program which prevented proper initialization.
 - The power-cycle re-boot was not included in the pre-upload ground simulation.
- Prior flight vehicles have experienced the same conditions many times, but a change in the partition order necessitated a different upload sequence to preserve proper initialization when the processor is in the partially updated state.

OCSD-A Inoperable Components

- The following items have been rendered inoperable after the software update anomaly (items in BLUE were tested prior to the update):
 - Sun Sensors
 - Earth Nadir Sensor
 - Earth Horizon Sensor
 - Rate gyros (STIM & VectorNav)
 - Reaction Wheels
 - Laser transmitter (powered on digital electronics and got response but did not fire laser)
 - Torque rods
 - Laser Range finder
 - Magnetometer

Memory Partitioning

Example Memory Map of 16 Bit PICs used on AeroCube

- > Boot Library references table of Boot-initialized variables
- > Table must match Boot Library or reset will çause errors

Bootloader Application

Separate Patch Functions from Main Application

> If Main Application Fails, Bootloader can still patch/update the application

> Currently on 8-bit Sensor, Propulsion and Reaction Wheel PICs

Bootloader Application

Updated Patching Routine

*0x80 and 0x400 discretization is due to flash read/write library constraints on PIC

Star Tracker Design & On-orbit Results

Post-Processed Star Tracker Image 1 (0.97 deg/s)

Post-Processed Star Tracker Image 2 (0.97 deg/s)

Star Smear Detail

Brightest Star (Mag 1.98)

Inverted Image

Pixels above threshold

Star Tracker Ground Measurements (Dark Sky)

Star Tracker On-Orbit Measurements (0.80 deg/s)

Star Tracker Solution Probability

 On-orbit sensitivity data supports analytical studies to determine the probability of obtaining a valid solution at maximum mission slew rates

Yukon Delta (Alaska) & Bering Sea – 10MP imager test photos

Yukon Delta (Alaska) & Bering Sea – 10MP imager test photos

OCSD-A Status Update Summary

- The Star Tracker data downloaded demonstrated that valid attitude solutions can be obtained at mission slew rates (up to 0.97 deg/s), which allows the laser communication system to point accurately while the vehicle is tracking the ground station
- The test images downloaded from the 10 MP imager demonstrate that the optics remained focused after launch and the imager can support the proximity operations objective – the ability to detect the locator LED beacon on the partner satellite.
- The modified design for the on-orbit reprogramming adds robustness and decreases the risk of disabling any of the processors in future missions during the patching process

