Introduction

• Corvus-BC 6U overview

• Subsystems to be open sourced

• Export control

• Future Rollout
Corvus-BC Overview

- 6U Form-factor
- 11 kg
- Imaging solution: 22 m GSD at 600 km, Red, Green, NIR spectral bands
- Flight computer: ARM A8 running Linux
- Power system: scalable 40Wh Li-Ion
- Communication: UHF transceiver running at 19.2 kbps for TT&C. Payload data is downlinked through Ka-band at 40 Mbps
- Solar panels: ARM M0+ processor, temperature, magnetometers sun sensors and magnetorquer coils
- Control: 3-axis with three reaction wheels, star tracker, GPS and gyro
- Storage: 1 TB
Corvus-BC Overview

- Solar Cells
- Flight Control System
- Ka-Band Radio
- Batteries
- Imaging Payload
Corvus-BC Overview

Ka-Band Radio

Star-tracker & Reaction Wheels

Imaging Payload

Flight Control System (“the rack”)
- Batteries
- GPS
- UHF TT&C Radio
- Flight Computer
Corvus-BC Overview

- Flight Computer (Aquila Space)
- Reaction Wheels Sinclair 30mN-sec
- Star Tracker Sinclair ST-16
- GPS (Novatel OEM615)
- Flight Computer (Aquila Space)
- Command and telemetry radio (AstroDev Lithium)
To be open sourced

Star-tracker & Reaction Wheels

Flight Control System ("the rack")
Technology included

- Source Code
- Schematics (Altium)
- PCB Layout files (Altium)
- Bill of materials
- Drawings (Solidworks)
- Part files (Solidworks)
- Testing procedures
- Assembly procedures
- Harness diagrams

GPL License
Motivation

- Reduce the price of remote sensing data
- Create a larger developer community that together can develop cheaper and more robust hardware/software space systems
- Enable faster technology integration
- Reduce the spacecraft costs while improving the reliability
- Changing company focus from hardware-centeric to data-centeric business model

Open Source is not a business model
Who can participate?

Initial release will be to individuals and organizations in the A5 Country Group:

<table>
<thead>
<tr>
<th>Argentina</th>
<th>France</th>
<th>Luxembourg</th>
<th>Switzerland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Germany</td>
<td>Netherlands</td>
<td>Turkey</td>
</tr>
<tr>
<td>Austria</td>
<td>Greece</td>
<td>New Zealand</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Belgium</td>
<td>Hungary</td>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>Iceland</td>
<td>Poland</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>Ireland</td>
<td>Portugal</td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td>Italy</td>
<td>Romania</td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td>Japan</td>
<td>Slovakia</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>Korea, South</td>
<td>Slovenia</td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>Latvia</td>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>Lithuania</td>
<td>Sweden</td>
<td></td>
</tr>
</tbody>
</table>

(and also the United States)
Community Platform

- A password protected community website will be setup
 - Technical files, wiki pages, bug tracker, email list, forums, etc
 - Similar to GitHub or Trac

- Users must create accounts, sign US Dept. of Commerce forms, and be authenticated

- Once on the site technical data can be exchanged in full compliance of EAR laws and regulations within the community website

- All of our technology is now controlled under EAR (not under ITAR)
 - All updates/patches/fixes must be ITAR free
Look for early adopters

- We are actively looking for early adopters
 - Universities
 - Companies
 - Individuals

- Future directions (let’s brainstorm!)
 - New ADCS algorithms
 - Propulsion
 - Local Ethernet (within the spacecraft)
 - Firecode/backdoor spacecraft reset receiver
 - Ground segment (software & hardware)
 - What else?...
Questions?

I’m here all week … please come find me!