Brazilian Inter-University CubeSat Mission Overview

victormenegon.eel@gmail.com

EMBEDDED SYSTEMS GROUP (GSE)
gse.ufsc.br
Florianópolis/SC - Brazil
11th CubeSat Developers’ Workshop
San Luis Obispo, April 24th, 2014

© Embedded Systems Group (UFSC)
- Federal University of Santa Catarina (UFSC)
- Florianópolis/SC - Brazil
Agenda

- Partnership
- Introduction
- Subsystems
 - Communication System
 - Power System
 - On-Board Computer
 - Attitude Control System
 - Payload
 - Ground Station
 - Launching
- Conclusion
Agenda

- Partnership
- Introduction
- Subsystems
 - Communication System
 - Power System
 - On-Board Computer
 - Attitude Control System
 - Payload
 - Ground Station
 - Launching
- Conclusion
- Brazilian Space Agency (AEB)

- National Council of Scientific for Technological Development (CNPq)
Federal Institute of Santa Catarina (IFSC)
Agenda

- Partnership
- Introduction
- Subsystems
 - Communication System
 - Power System
 - On-Board Computer
 - Attitude Control System
 - Payload
 - Ground Station
 - Launching
 - Conclusion
Introduction

- The project’s main goals are:
 - **To inspire** both undergraduate and graduate students to work in the space field
 - To establish a **strong cooperation** network among industry and university institutions

- It is our first cubesat project.
The system was divided into modules in order to make it reusable in future projects and to make tests and formal verification.
Agenda

- Partnership
- Introduction
- Subsystems
 - Communication System
 - Power System
 - On-Board Computer
 - Attitude Control System
 - Payload
 - Ground Station
 - Launching
 - Conclusion
Communication system: Requirements

- The Communication subsystem verify the **integrity** of the frame and the command received from a ground station.

- A **beacon** transmitter is required using independent communication resources:
 - The beacon must send data from the Power System
 - Even if the Communication System fails, the Beacon should **always** be able to send Power System data
 - The beacon must avoid unnecessary battery consumption
Communication system: Architecture

Transceiver
- Radio Transmitter & Modulator
- Encoder (encapsule AX.25 frame)

Microcontroller
- Encoder (decapsule AX.25 frame)
- Control Unit
- I2C Bus Protocol

Downlink
- Beacon
- HPA
- Switch

Uplink
- LNA

Control Bus
- I2C Data Bus

Radio
- Transmitter & Modulator
- Receiver & Demodulator

Energy
- Energy

Additional Components
- Microcontroller Energy
- Encoder
- Decoder
- I2C Bus Protocol

© Embedded Systems Group (UFSC)
Agenda

- Partnership
- Introduction
- Subsystems
 - Communication System
 - Power System
 - On-Board Computer
 - Attitude Control System
 - Payload
 - Ground Station
 - Launching
 - Conclusion
- Worst case orbit – **Equator plane**
- Circular orbit
- Altitude: **310 Km**
- Antenna's face always pointing to Earth
- **5 faces** covered by solar panels
- Free rotation around 'z' axis
- **15 solar cells** per PCB
- **5 sets** in parallel of 3 cells in series
- Open circuit voltage per set: **6.6 V**
- Total short-circuit current: **155 mA**

Source: interorbital.com
Average power: 1.055 W
- At least **three** different architectures
- Allow students to design the **complete architecture** (from design to implementation)
- **Compare** architecture's performance (simulations and experiments)
- Select the best one for the satellite
- Solar panel **current measurement**
- Dropout converter to 4.2 V
- Battery monitoring
- Multiple power buses 3.3 V and 5 V (on/off)
- **OBC** controlled (SPI or I²C and 1 Wire)
- Dedicated µC (MSP430) (Architecture 2)
- **MPPT** ICs (Architecture 3)
Agenda

- Partnership
- Introduction
- Subsystems
 - Communication System
 - Power System
 - On-Board Computer
 - Attitude Control System
 - Payload
 - Ground Station
 - Launching
 - Conclusion
On Board Computer (OBC) - Software Solution

Applications

- Measurement
- Monitor
- Command
- Log
- Telemetry

RTOS

FreeRTOS

Drivers

- Basic intermodule communication
- Attitude Driver
- Power System Driver
- Communication Driver
- Payload Driver

Hardware

© Embedded Systems Group (UFSC)
On Board Computer (OBC) - Software Solution

Applications

- Measurement
- Monitor
- Command
- Log
- Telemetry

RTOS

FreeRTOS

Drivers

- Basic intermodule communication
- Attitude Driver
- Power System Driver
- Communication Driver
- Payload Driver

Hardware

© Embedded Systems Group (UFSC)
OBC: Measurement Application

getBatLevel()
recBatLevel(level)

getPos()
recPos(pos)

getData()
recData(data)

tsavaData(data)

Trigger Monitor
OBC: Monitor Application

- Measurement
 - Battery level < x %
 - False
 - Log ?
 - True
 - Lower power consumption
- Current Peak
 - Restart the system
OBC: Telemetry Application
On Board Computer (OBC) - Software Solution

- Measurement
- Monitor
- Command
- Log
- Telemetry

FreeRTOS

- Basic intermodule communication
- Attitude Driver
- Power System Driver
- Communication Driver
- Payload Driver

Hardware

© Embedded Systems Group (UFSC)
OBC: Operating System

- Reliability
- Architecture **compatibility**
- Allow application **priority setup**
- Power and memory consumption
- **Library** availability
Agenda

- Partnership
- Introduction
- Subsystems
 - Communication System
 - Power System
 - On-Board Computer
 - Attitude Control System
 - Payload
 - Ground Station
 - Launching
 - Conclusion
Passive attitude stabilization: Permanent magnets and hysteresis rods
- Stabilization in only two of three rotation axes.
Agenda

- Partnership
- Introduction
- Subsystems
 - Communication System
 - Power System
 - On-Board Computer
 - Attitude Control System
 - Payload
 - Ground Station
 - Launching
 - Conclusion
Payload Targets

- To study COTS FPGA’s behavior when exposed to radiation
- To study energy harvesting technologies applicable to nano-satellites environment

PCB of the FPGA board used in the payload
Agenda

- Partnership
- Introduction
- Subsystems
 - Communication System
 - Power System
 - On-Board Computer
 - Attitude Control System
 - Payload
 - Ground Station
 - Launching
 - Conclusion
Ground Station

- **UHF Antenna:**
 - Frequency: **430-450 MHz**
 - Forward Gain: **15.5 dB**

- **VHF Antenna:**
 - Frequency: **144-148 MHz**
 - Forward Gain: **11.1 dB**
Agenda

- Partnership
- Introduction
- Subsystems
 - Communication System
 - Power System
 - On-Board Computer
 - Attitude Control System
 - Payload
 - Ground Station
 - Launching
 - Conclusion
Launching is planned for **2016**

Source: interorbital.com
Conclusion

- **The requirements** and the features of each subsystem were defined.
- The students are **learning, being inspired** and **enjoying** the project.
- Besides, they are exchanging information with **other universities and institutes**.
- Also, students are learning and feeling what is like to be in a **real engineering project**.
Thank you for your attention!

Victor Menegon
victormenegon.eel@gmail.com

EMBEDDED SYSTEMS GROUP / UFSC
gse.ufsc.br

© Embedded Systems Group (UFSC)