INSPIRE

Interplanetary NanoSpacecraft Pathfinder In a Relevant Environment

Low-cost mission leadership with the world’s first CubeSat beyond Earth-orbit

PI: Dr. Andrew Klesh, Jet Propulsion Laboratory, California Institute of Technology
PM: Ms. Lauren Halatek, Jet Propulsion Laboratory, California Institute of Technology

University Partners:
• Cal Poly - San Luis Obispo
• U. California – Los Angeles
• U. Michigan – Ann Arbor
• U. Texas – Austin

Collaborator:
• Goldstone-Apple Valley Radio Telescope (GAVRT)

Copyright 2014 California Institute of Technology. Government sponsorship acknowledged.
Why do this? NASA and JPL have identified high-value science applications using nano-s/c technologies.

Low-Cost Heliophysics: Constellation of 50 standalone 10 kg spacecraft to monitor the solar wind 3D structure at Sun-Earth L1.

Supplemental Science: Sacrificial probes used to scout plume passage or descend into high magnetic fields.

Enabling Novel Science: Use multiple nano s/c to allow for distributed flybys, capturing multiple vantage points simultaneously.

These innovative science applications can only be enabled through the development and demonstration of critical gap-filling nano-s/c technologies.

INSPIRE Mission

INSPIRE
- Telecom, C&DH, Nav, Magnetometer

Exploder
- Disco-13

InSight
- Launch

NF-4

SLS EM-1

BioSentinel

NEA Scout

Lunar Flashlight

Mars '18

Mars 20 Disco-14

Clipper?

2014
2015
2016
2017
2018
2020 and Beyond

Pre-Decisional -- For Planning and Discussion Purposes
INSPIRE will enable a new class of interplanetary explorer, while providing components to reduce the size and cost of traditional missions.

Mission Objectives

- Demonstrate and characterize key nano-spacecraft telecommunications, navigation, command & data handling, and relay communications for mother-daughter
- Demonstrate science utility with compact science payload (1/2U Compact Helium Vector Magnetometer & Imager w/ Agile Science Processing)
- Demonstrate ability to monitor and power cycle COTS/university processing systems

Mission Concept

- JPL-built spacecraft; collaborative partnerships with Michigan, Texas, UCLA and CalPoly/Tyvak for COTS systems. Ground stations at DSN and secondary stations compatibility

Nominal:
- NASA CLI Launch: Ready Summer 2014
- Deploy to Escape
- Up/Downlink
- Data Crosslink
Design Overview

CubeSat Overview:
- Volume: 3U (10x10x30cm)
- Mass: 4.0 kg
- Power Generation:
 - 3 Axis Stabilized: 20 W
 - Tumbling: 13 W
- Data Rate: 62-256000 bps

Software:
Developed in-house (protos)

I&T:
In-house S/C I&T, external environmental testing, NASA CLI P-Pod/Launch Integration

Operations:
- Primary: DSN
- Secondary (Receive only): DSS-28 (GAVRT), & Secondary Stations, ex: Peach Mountain

S/C components provide the basis for future high-capability, lower-cost-risk missions beyond Earth expanding and provide NASA leadership in an emergent domain

Model is from Mechanical Fit Check on Feb 3, 2014
Rapid Hardware Evolution

Prototype Mechanical Fit Check
Feb 2014

Functional Engineering Model – TVAC Fixture
Apr 2014
Dark Sky StarTracker Validation
Table Mountain, Feb 2014

JPL American Flag Imaged by Star Tracker

Blue Canyon Technology Thin-Slice StarTracker
End-to-End Detumble Demonstration
Formation Flight Lab - JPL, Apr 2014
Detumble Algorithm, Gyro, and Attitude Control Demonstration

AstroDev CDH System with onboard MEMS gyro
JPL Flight Software – Joshua Schoolcraft and Thomas Werne
JPL ACS Algorithm – Dr. Eric Gustafson
U.Texas Cold-Gas Thruster System – Travis Imken and Dr. Glenn Lightsey
Thermal-Vacuum Functional Testing & Deployment Verification
JPL, Apr 2014

ISIS UHF Antenna
Pumpkin Deployable Solar Arrays
JPL CVH Magnetometer – Dr. Carol Raymond and Dr. Neil Murphy
TVAC led by Allen Kummer, with Lauren Halatek and John Leichty
• X-Band Radiating / Receiving
• Uplink / Downlink Ground SW
• Telemetry “Backbone”
• Electrical / Hardware Integration
• Flight Software Functionality w/ Subsystem Power Control
We are here!
Software has multiple (competing) objectives:
- Design Robust SW for Flight
- Design Enough SW for Immediate Test

Present Day
- ACS DeTumble
- UHF Relay
- DSN Compatibility
- System Mag
- Board Functional Testing
- System Thermal-Vac Testing / Balance
- HW Iteration

End-to-End Testing / ORTs
- Test Pod Vibe
- System TVAC / Bakeout
- COFR / Pre-Ship Review
- Ready for Flight
- End of June 2014
- Awaiting NASA CLI Manifest

Selected Subsystem TVAC
Iterate

Iterate and Re-Deliver

Thermal-Re-Design

Ambient, Hot, Cold-Vac Deploy

DSN Compatability

Sw Check

Dark Sky

Mag Improvements

Mag/EMI/EMC

Parallel Configurations are Critical

Iterate and Re-Deliver

COFR / Pre-Ship Review

System Mag

Prototype DSN Compatability

Mag/EMI/EMC

End of June 2014

Waiting NASA CLI Manifest

Antenna Tuning

DSN Compatibility
Conclusions & Lessons

INSPIRE will enable a new class of interplanetary explorer, while providing components to reduce the size and cost of traditional missions

• Deep space NanoSpacecraft are scientifically compelling – but technological challenges are not simple.

• INSPIRE would demonstrate survivability, navigation and communication utilizing the CubeSat platform, and in partnership with the CubeSat community

• Integration is never easy, and some problems are exacerbated in deep space. Thermal (no eclipse!); ACS (no magnetic fields!); Communications (need big dishes!); Tracking (no space command!)

• Iterate early, with several version of boards in the lab for parallel software development and testing. Interfaces amongst a large team are challenging, and generally limited documentation exists for CubeSats.

• Exploit existing capabilities (eg, NASA AMMOS ground software); adapt processes to meet needs and risk posture; adopt standards that make sense (CCSDS enables DSN coverage); and, sometimes, create when it “can’t be done”.

• DSN has NO fees for aperture time and RF compatibility testing. There is a setup/ configuration fee during mission development that all missions pay.