Implementation of SDM–Lite for Space Plug and Play Avionics (SPA) CubeSats

Chris Mitchell
Space Systems Laboratory
University of Kentucky

10th CubeSat Developers’ Workshop
April 24–26th, 2013
San Luis Obispo, CA
Team

Chris Mitchell, Max Bezold, Marc Higginson-Rollins, Steve Alvarado, Zachary Jacobs, Samir Rawashdeh, Dr. James Lumpp

Partnerships: COSMIAC – Brian Zufelt, Craig Kief
Overview

- Space Systems Lab and COSMIAC background
- SPA in low power and low data rate environments
- 8051-based ASIM
- SDM–Lite applications
New NanoRacks/CubeLab Standard on the ISS, July 2010

KYSat-1 2006
KYSat-2 2013
PRINTSat and RAMPART 2012
High Altitude Balloons (Background Image)

First CubeSats Ejected into Sub-Orbital Space, March 2010
First Flight, Composite Super Loki, December 2007
COSMIAC provides Years of experience in design and consulting for SPA development

Recent development includes
- ORS2 SPA centered 6U satellite (scheduled launch 2013)
- Trailblazer SPA centered 1U Satellite (scheduled launch 2013)
- Consulted on a SPA interface for the MAI–400 ADACS
- Provides training on new and Innovative SPA products (AAC Virtual Satellite Integrator)
SPA–1 (I2C based)

- SPA–1 developed for small spacecraft (NanoSats, CubeSats)
- SPA–1 utilizes I2C as the communication layer between ASIM and SDM
- The CubeLab bus is currently being modified to allow SPA–1 devices to be tested on orbit
 - Rapid SPA–1 device testing in microgravity
 - Increase TRL
SDM–Lite Bus

- **SDM**
 - Compiled for VXWorks and Linux
 - 32-bit microcontroller
 - Supports SPA–O, SPA–S, SPA–U and SPA–1
 - Supports high power and high data rate SPA devices
 - Very large code base

- **SDM–Lite**
 - Targets low–power, low–resource microcontrollers
 - Full XTEDS support being supported soon
 - Targets SPA–1 devices
 - Small code base
SDM–Lite Bus

- Applications for a SDM–Lite Bus
 - Lower power design for smaller spacecraft (1U–2U)
 - Ability to manage smaller portions of a larger SPA network and bridge connections to a faster SPA protocol like SPA–U(USB), and SPA–S (Spacewire)
8051-based ASIM

- 3K RAM
- 7K Flash
- SPI, UART, I2C
- Useful for ASIM in CubeSats
- Tested with Full SDM
- Tested with SDM-Lite
Trailblazer

- 1U Satellite
- SPA Centered Bus with a SDM–Lite approach
 - Manages 5 ASIMs through an 8–bit microcontroller
 - Allows modules to be directly integrated into another SPA bus design without modification. (Radio on ORS²)
- Manifested on ORS3 through ELaNa IV
KySat–2 Mission

Goals:
- Educational/Public Outreach through photos and sensor data for K–12
- Distributed processing architecture
- Verify Stellar Gyroscope method for attitude determination
SPALab Overview

- Extension of collaboration with NASA Ames Research Center
- Enables SPA–1 devices to be rapidly tested in microgravity on the ISS
- Reconfigurable experiments through the use of upload scripts
- Can be reconfigured by astronaut mid-flight
- Data and experiment return available
SPALab bus

NanoRack Platform

USB TYPE B INTERFACE

+5v/USB

USB

ELC

SPA CubeLab Bus

Additional power reserves

8-10v

+5v

5v

3.3V

EPS

I2C

USB SD access with bypass

3.3V

USB

I2C CONTROL

SD CARD DATA (SPI)

C&DH

Payload Interface Module

3.3V

SPI/USB

SD1

3.3V

SD0

SPA Device or Generic Payload

Real Transfer

3.3V

SPA-1 enabled CubeLab Bus 4/28/2013
Summary

- SPA in low power and low data rate environments
- 8051–based ASIM
- SDM–Lite applications
 - Trailblazer
 - KYSat–2
 - SPA Lab
Thank You

Zachary Jacobs – zach.jacobs@uky.edu
Presentation by Chris Mitchell
Space Systems Laboratory
University of Kentucky
http://ssl.engr.uky.edu

Master’s Thesis
Providing a Persistent Space Plug-and-Play Avionics Network on the International Space Station
http://uknowledge.uky.edu/ece_etds/16/

COSMIAC
University of New Mexico
http://www.cosmiac.org