2012 CubeSat Workshop

Lt Col Guy Mathewson
Office of Space Launch

18 April, 2012
OSL’s Vision & Mission

- OSL delivers the highest standard of launch and operations support to ensure 100% mission success

- OSL earns the confidence of our valued space vehicle customers and mission partners to deliver vital NRO capabilities to orbit
OSL’s Interest in CubeSats

- The NRO is investigating meeting – some – not all - future NRO needs with cubesats – they need a way to orbit

- Director-NRO, Mr Bruce Carlson, provided keynote speech at 2011 SmallSat Conference, Logan, Utah
 - Explore new phenomena to regain strategic advantages over adversaries
 - Demonstrate revolutionary new technologies that enable new intelligence missions
 - Develop our future workforce
 - Rapidly change on-orbit configurations and formation geometry

- Cost and availability of launch opportunities an obstacle
OSL’s Efforts to Increase CubeSat Launch Opportunities

- Developed capability to deliver 175 lbs to orbit using Aft Bulkhead Carrier on aft end of ULA’s Atlas Centaur upper stage
 - Single separating or non-separating spacecraft
 - 8 P-Pods to orbit using the Naval Postgraduate School Cubesat Launcher (NPSCuL)
 - First flight scheduled for this August on NROL-36: Operationally Unique Technologies Satellite (OUTSat)
 - Integrated satellite delivered to VAFB and ready for mate to the Centaur later this month; launch 2 Aug

- Funded Adaptive Launch Services’ A-Deck structure from PDR to CDR
 - Capable of carrying 2,000 lbs of auxiliary payloads on both Atlas V and Delta IV EELV’s
 - Stand-alone structure or used in conjunction with ESPA
 - Structure successfully completed qual vibration testing last week
 - CDR next week
OSL’s Efforts to Increase CubeSat Launch Opportunities (continued)

- Collaborate with NASA LSP, SMC/SDTD, STP, industry, academia and others to ensure breadth of knowledge
 - NASA/LSP-sponsored CubeSats part of NROL-36 ABC manifest

- Host annual Small Payload Rideshare Conference
 - Cleveland, OH 5-7 June 2012 www.sprsa.org

- Participate in conferences and workshops like this one

- Maintain close relationship with NRO’s CubeSat program office
 - Working with mission partners, program office currently has over 30 CubeSats awaiting launch in next four years
Incremental Approach to Complexity

- NRO primary SV programs extremely risk adverse

- OSL taking incremental approach to getting primary customers comfortable flying auxiliary payloads
 - Provides experience for cubesat integration team before working more complex missions
 - Provides confidence to primary customer risk is manageable

- Example: NROL-36 mission ground rule: no propulsion
 - Plan to relax for future missions – although systems will have to meet the letter of the law for inhibits, testing, documentation, etc
(U) Atlas V with Aft Bulkhead Carrier

- Atlas Booster
- RD-180 Engine
- Centaur Interstage Adapter
- Single RL-10 Engine
- Payload Fairing
- Centaur Upper Stage
- Aft Bulkhead Carrier
- Primary Satellite
NROL-36/OUTSat Auxiliary Payload

CubeSat

3U Installed in P-POD

1U P-POD

8 integrated P-PODs installed in NPSCuL

OUTSat installed on Centaur aft bulkhead

NPSCuL & P-PODs

Atlas V Centaur Upper Stage Aft End
Nominal Auxiliary Payload Mission

AP Deployment: *does not take place until primary mission is complete*
(U) NROL-36/OUTSat Schedule

<table>
<thead>
<tr>
<th>Jan</th>
<th>Mar</th>
<th>May</th>
<th>Jul</th>
<th>Sep</th>
<th>Nov</th>
<th>Jan</th>
<th>Mar</th>
<th>May</th>
<th>Jul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kickoff</td>
<td>FEM Delivered</td>
<td>ULA Coupled Loads Analysis</td>
<td>Gate 1</td>
<td>PDR</td>
<td>Gate 1</td>
<td>PDR</td>
<td>Gate 1</td>
<td>PDR</td>
<td>Gate 1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRR</td>
<td>Cubesat delivery</td>
<td>PPQD Integration to NPSCul</td>
<td>OUTSat Acceptance Testing</td>
<td>ULA Gate 3</td>
<td>MRR</td>
<td>Deliver OUTSat to VAFB</td>
<td>Mate OUTSat to Centaur</td>
<td>Launch 2 Aug</td>
<td></td>
</tr>
</tbody>
</table>

UNCLASSIFIED
NROL-36/OUTSat CubeSat Manifest

<table>
<thead>
<tr>
<th>P-POD</th>
<th>Sponsor</th>
<th>CubeSat Name</th>
<th>Organization</th>
<th>Size</th>
<th>Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>NRO/MSD</td>
<td>ORS Enabler Sat</td>
<td>Army SMDC</td>
<td>3U Qty 2</td>
<td>4.1</td>
</tr>
<tr>
<td>2</td>
<td>NRO/MSD</td>
<td>AeroCube-4.5</td>
<td>Aerospace Corp</td>
<td>1U Qty 2</td>
<td>1.3</td>
</tr>
<tr>
<td>2</td>
<td>NRO/OSL</td>
<td>AeroCube 4.0</td>
<td>Aerospace Corp</td>
<td>1U</td>
<td>1.1</td>
</tr>
<tr>
<td>3</td>
<td>NRO/MSD</td>
<td>AENEAS</td>
<td>USC</td>
<td>3U</td>
<td>3.7</td>
</tr>
<tr>
<td>7</td>
<td>NRO/MSD</td>
<td>Re</td>
<td>LLNL</td>
<td>3U</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>NASA/LSP</td>
<td>CSSWE</td>
<td>Univ of Colo/NSF</td>
<td>3u</td>
<td>3.5</td>
</tr>
<tr>
<td>5</td>
<td>NASA/LSP</td>
<td>CXBN</td>
<td>Morehead State University and Kentucky Space</td>
<td>2u</td>
<td>2.6</td>
</tr>
<tr>
<td>5</td>
<td>NASA/LSP</td>
<td>CP5</td>
<td>Cal Polytechnic San Luis Obispo</td>
<td>1u</td>
<td>1.1</td>
</tr>
<tr>
<td>6</td>
<td>NASA/LSP</td>
<td>CINEMA</td>
<td>NSF/Cal Berkeley</td>
<td>3u</td>
<td>2.8</td>
</tr>
</tbody>
</table>
(U) Completed OUTSat Ready for Flight
A-DECK Configuration – Auxiliary Payload (AP) Capabilities

- **APSYSTEM CAPABILITY**
 - Weight: 2,200 lbs (1000 kg)
 - Diameter: 50 in (127 cm)
 - Height: 60 in (154.4 cm)
 - AP c.g. ½ height: 21 in (21 x 2.54 cm)

- **OTHER CAPABILITIES**
 - Multiple AP’s accommodated
 - Variable intervals between APL release signals with Auxiliary Payload Support Unit (APSU) avionics system with up to 32 separation events
 - Options for AP telemetry, AP power and release video
 - Compatible with all EELV 1575 Interface
 - Compatible with all EELV Separation Adapter
 - Compatible with ESPA
A-Deck Structure

- **Structural Component Approach**
 - Monolithic Aluminum Design
 - Spider Pattern Centered Drilled
 - CNC Machined
 - Designed for 1000 kg Load Bearing Capability
 - MiL Spec Drilling for Fasteners

One Mini-Spacecraft Configuration
A-Deck Structural Testing

A-DECK arrives at NTS Test Facility

A-DECK carried to EDA 330

A-DECK lowered in EDA 330

Mass Simulator on A-DECK

A-DECK Suspended in Acoustic Test Chamber
Summary

- The NRO is aggressively seeking CubeSats as a solution to some of its challenges.
- The NRO’s CubeSat program office is teaming with multiple partners to provide these solutions.
- OSL has demonstrated willingness to invest in platforms that offer rideshare opportunities.
- Willing to work with primary SV customers, Range, Air Force, and others to overcome technical, management, and emotional roadblocks to flying auxiliary payloads.
- Demonstrated capability to work with teammates – NASA LSP’s ELaNa program for example – to bring a mission to fruition.
- Ready for NRO’s first rideshare mission – 11 cubesats – this August.
- Intent is to fly one rideshare mission per year.

Rideshare platform development nearing end – focusing on getting cubesats into orbit.