How do we break the mold of one ground station – one satellite for science missions?

For a 3–6 month mission, is it worth it to build a ground station?

How do we facilitate the Ground segment to make it easier to get educational missions to space?

Can a larger community capitalize on these efforts?
Global Education Network for Satellite Operations (GENSO) is a software standard which allows each ground station on the network to communicate with non-local spacecraft and transmit data to different ground terminals that have access to the specific satellite.

GENSO was developed primarily by volunteers in the educational / amateur radio community. ESA took the lead under auspices of the International Space Education Board.
GENSO Network Details

*AUS = Authentication Server
*GSS = Ground Station Server
*MCC = Mission Control Client

One MCC will be assigned for each GENSO registered spacecraft when fully functional.

All GSS receive and distribute a piece of the puzzle but only one MCC sees the entire picture. Since the GSS is tied to a physical ground station, it only sees what is available during a pass whereas the MCC has access to the aggregate of all downloaded data.
GENSO Network Entities – AUS

AUS

- Security
 - Entities authentication

- Management
 - Network Management and Statistics
 - Metadata on accesses results
 - User Management

- Information
 - TLE autoupdate
GENSO Network Entities – GSS

- **GSS**
 - Autonomous tracking and telemetry downlink
 - Automated sending of pass reports to Mission Controllers
 - Real-time connection to MCC (requires manual request and confirmation)
GENSO Network Entities – MCC

- MCC
 - Passreport viewer
 - Scheduling over network stations
 - “Wallplug” to Mission Software (Serial port interface (virtual modem) / audio stream)
R1E – Release 1 for ELaNa

- First mission test case
- Network created specifically for ELaNa I with GSSs running the R1 software
- Allow real-time distribution and use of TLEs in early mission stages
- Deployed February 2011
- Many schools and individuals trained
Current supporting five CubeSats from ELaNa 3 including ISS and AO–51, Fast1, Fast2 and Vega launch cubesats

All AFRL UNP teams trained
R2 – Improved Capability

- Released in 2011
- Required major upgrades/fixes
- Rereleased in 2012
- Currently undergoing testing
- Plans for ESA to release this as open source soon
Summary

- R1 – Stable testing release
 - Successful proof of concept test
- R1E – Mission–support test release
 - Successfully supporting FASTRAC
- R2 – Currently being developed
- Beyond – Open–source release
 - Follows R2 completion
- Training sessions are available and limited assistance