TIWS Cubesat Mission

John Westerhoff
University of Illinois at Urbana-Champaign
Illinisat-2 Overview

• Design Objectives:
 • Multi-mission capable bus
 • ~1U volume for bus
 • 2U, 3U cubesat capable (1-2U for payload)

• Mission types:
 • Remote sensing (Earth observing)
 • In-situ sensing (Thermosphere)
 • Technology demonstration
Illinisat-2 Subsystem Overview

- **Power:**
 - 5V, 3.3V regulated, 7.4V Li-ion battery pack
 - 4 solar panels and battery charger
 - 3.4W, 5.4W avg power for 2U, 3U designs

- **Communications:**
 - Amateur radio band
 - Yaesu VX-3R radio
 - Champaign, IL ground station
Illinisat-2 Subsystem Overview

- **ADCS:**
 - Determination (~1°): magnetometer, rate gyros, photodiodes
 - Control (~5°): 3-axis magnetic torquers

- **C&DH:**
 - TI OMAP5912 CPU running Linux kernel
 - IOND daemon-based software

- **Structures/Thermal:**
 - 1.5U, 2U, 3U designs
 - Carbon fiber side panels with integrated torque coils
TIWS Mission

• Mission Design:
 • 6-12 month lifetime
 • 300-450km altitude
 • 30°-60° inclination orbit

• Mission Objectives:
 • Remote observation of atmospheric gravity waves (AGW) in mesosphere
 • In-situ measurements of thermospheric ion density, temperature, composition
 • Educate and train young engineers at UIUC
TIWS Science

- Measurements of O\textsubscript{2} atmospheric (0-0) band airglow in mesosphere
 - Brightness perturbation
 - P-R branch ratio provides rotational temperature, wave amplitudes
- In-situ ion density measurements
- Large Waves or Bores (LWB) observations and correlated response in ionosphere
TIWS Science

• Science Goals:
 • Global measurements of medium-large scale (>150km wavelength) LWBs
 • Understand wave energy transport between mesosphere and ionosphere
 • Understanding of ionospheric irregularities

• Scientific Impact:
 • Plasma irregularities can affect radio wave propagation in ionosphere
 • Electron density gradients can degrade satellite-based navigation and communication systems
TIWS Sensors

• 2 Photomultiplier tubes (PMT)
 • Hamamastu H8259-02
 • 0.4 W power per sensor
 • Lens focal length: 37mm
 • Filter bands at 760.5, 762.8nm

• 1 Photodiode
 • Background (noise) observation
 • Lens focal length: 0.5”
 • Filter band at 777nm
TIWS Sensors

• Retarding Potential Analyzer (RPA)
 • University of Texas at Dallas
 • Ram-direction oriented
 • 0.8 W avg power
 • Ion-trap mode, Burst mode
TIWS Sensors

![Graph showing wavelength and temperature relationships for different filters and temperatures.]

\[T_{\text{O}_2(b\rightarrow\gamma),\text{rot}} = 192 \cdot R_{\text{SF1/SF2}} - 30 \]
TIWS Sensors

• PMTs:
 • Integration time: 1-6s
 • 15x25km spatial resolution (footprint) for 1s integration
 • SNR = 24
 • 1000+ km target (AGWs)
TIWS Sensors

• RPA:
 • Ion density resolution: ~100cm$^{-3}$
 • Ion temperature resolution: ~50K
 • Ion trap mode:
 • 2 data samples per second
 • Ion density spatial resolution of 4km

• Burst mode:
 • 20 data samples per second
 • Sub-kilometer spatial resolution