Federated Ground Station Network Capacity Assessment

Sara Spangelo¹
James Cutler²

¹Ph.D. Candidate
Department of Aerospace Engineering
University of Michigan

²Assistant Professor
Department of Aerospace Engineering
University of Michigan

Spring 2010 CubeSat Conference
San Luis Obispo, California
Motivation

Existing communication systems designed for single missions and highly constrained.

- Many small satellites communicate only to one or a handful of dedicated ground stations.
- Existing ground stations are monolithic in design and largely underutilized.

Growing number of satellite developers planning science missions face ground station infrastructure limitations

- Satellites are unable to maintain 24/7 coverage with current ground stations.
- Systems are complex, non-standardized, and have reliability issues.

Potential Solution:

Federated Ground Station Network (FGSN)
Federated Ground Station Networks (FGSNs)

FGSN: Synergy of autonomous, globally distributed ground stations\(^1\)

Internet-enabled communication system where ground stations are independently owned + loosely cooperative

Federated Ground Station Networks (FGSNs)

FGSN Advantages:

- Communication opportunity, dynamic, flexible framework
- Science Missions: constellations capture data to avoid space and time aliasing (more than just glimpses of micro- and macro-physics)\(^1\)
- Studying the sun, heliosphere, magnetosphere, ionosphere, mesosphere, atmosphere, and climate change.\(^2\)

Potential beneficiaries:

- QB50, NPSCuL, MMC Projects
- NASA, Industry, DoD, Air Force Networks
- National Science Foundation (NSF)
- International CubeSat Community (Michigan, CalPoly, etc)

\(^1\) H. Spence and T. Moore. A retrospective look forward on constellation-class geospace missions. Fall AGU Meeting, December 2009.
1. Analytical model as a function of ground station and satellite constraints and mission requirements

2. Assess network capacity and identify trends of existing and future networks by numeric simulation

Larger Goal:

Develop robust, real-time optimization algorithms for multi-satellite missions and FGSNs
Network Capacity Model

Capacity: Amount of information exchanged across the network

Capacity of Network:

\[C_N = \sum_{j=1}^{m} C_j(t) \]

- \(m = \# \text{Ground Stations} \)
- \(n = \# \text{Satellites} \)

Capacity of Ground Station \(j \):

\[C_j = \sum_{i=1}^{n} \int_{0}^{T} a_{ij}(t) r_{ij}(t) l_{ij}(t) \eta_{ij}(t) dt \]

- \(a: \text{Availability} \)
- \(r: \text{Data rate} \)
- \(l: \text{Link feasibility} \)
- \(\eta: \text{Efficiency} \)
- \(T: \text{Period} \)

Spangelo et al.

Motivation
Introduction
FGSN
Contributions
Network Model
Capacity
Assessment
Conclusion
Future Work
Ground Station Constraints:

- Antenna size
- Scheduling conflicts
- Pointing/ slewing capabilities

Satellite Constraints:

- Antenna size
- Transmit/ Receive
- Power
- On-board energy
Network Capacity Model Levels

Ellipse Area: Network Capacity, decreases with increasing model fidelity

- **Maximum Model**
 - Constant ideal Link

- **Topological Model**
 - Line-of-sight Constraints

- **Scheduled Model**
 - Operational Constraints

- **Actualized Model**
 - Off-nominal Constraints
Tools

- Satellite Tool Kit (STK)® and Matlab®
- Two line elements (TLEs) for CubeSats from www.spacetrack.org
- STK/SGP4 Propagator for orbit maneuver and trajectory analysis
- Models ideal P-POD deployment (ΔV, plunger)
- Computes separation, contact times
Capacity Assessment: Example Satellites and Ground Stations

CubeSats

- Low cost, standardized access to space
- Miniaturized satellite (nanosatellite)
- Each Cube (1U): 10cm cube, 1 kg

Radio Aurora Explorer (RAX)

Example launcher: Poly Picosatellite Orbital Deployer (P-POD) standard interface between CubeSat and Launch Vehicle

Ground Stations

CubeSat Ground Station Community

Air Force Satellite Control Network (AFSCN)

Images Credit: CalPoly Website, University of Michigan CubeSat Survey, US Air Force Portal Website
Capacity Assessment

Average Daily Access Time

Spangelo et al.

Motivation
Introduction
FGSN
Contributions
Network Model
Capacity Assessment
Conclusion
Future Work

Minutes/day
Percentage of satellite orbits the satellite will be in view of a ground station with minimum elevation 0°.
Effect of Ground Station Latitude

- 3 Ground Stations in Air Force Satellite Control Network (AFSCN) to a AeroCube-2 satellite in P-POD TacSat3 launch

AeroCube-2 Satellite from Dnepr-2 Launch
Orbital Parameters

- $i = 98.04^\circ$-98.08°
- $e_{avg} = 0.0086$
- $a = 7.085 \cdot 10^3 \text{km}$

Figure: Total Daily Access Time (sec) vs. Days from Epoch 17 Apr 2007

- GTS $\lambda = 13.6^\circ$
- NHS $\lambda = 42.9^\circ$
- TTS $\lambda = 76.5^\circ$

- λ: Ground station latitude

Legend:
- High latitude
- Mid latitude
- Low latitude
Effect of Ground Station Latitude

Simulation of Satellite at 40° Inclination using STK SPG4 Propagator
Capacity Assessment

### Ground Station	Latitude Category
AFSCN | Multiple

AeroCube3, CP6, Hawksat Satellites (TacSat3 Launch)

- $i = 40.5^\circ$
- $e_{avg} = 0.003$
- $n = 15.4 \text{ rev/day}$
- $a = 6.83 \text{ km}$

Time after Epoch

- 43 days

Earth Inertial Axes
1 Jul 2004 00:00:00.000 Time Step: 30.00 sec

Educational Use Only
Clustered Satellite P-POD Launch

Individual and Total Network Capacity

3 satellites from P-POD TacSat3 launch vehicle from Minotaur I
Ann Arbor Ground Station (Latitude: 42.27 N, Longitude: 83.74 W)

AeroCube3, CP6, HawkAat
Orbital Parameters

- \(i = 40.5^\circ\)
- \(e_{avg} = 0.003\)
- \(a = 6.83 \cdot 10^3 \text{km}\)
Ground Station Network to 3 CubeSats

AeroCube3, CP6, HawkAat
Orbital Parameters

$i = 40.5^\circ$
$e_{\text{avg}} = 0.003$
$a = 6.83 \cdot 10^3 \text{km}$

Motivation
Introduction
FGSN
Contributions
Network Model
Capacity
Assessment
Conclusion
Future Work

Full Air Force Satellite Control Network to 3 Satellites in P-POD from TacSat3 launch vehicle from Minotaur I
Future Work & Applications

Future Work:

- CubeSat Survey to identify spacecraft needs
- Increase satellite and network model fidelity
- Develop real-time scheduling tools
- Dynamic optimization techniques for mission design & tactical scheduling

Future Applications:

- CubeSat Developers (104 users, 98 GSs, 291 antenna systems)
- Naval Postgraduate School (NPS) NPSCuL to deploy 50 1U CubeSats
- QB50 Project : 50 CubeSats science mission (*in-situ* and re-entry research)

Image Credit: USGS NASA Website
Acknowledgments

- Small Satellite Research Group
- Radio Aurora eXplorer (RAX) Team
- Professor McKague & CubeSat Community
- National Science and Engineering Research Council of Canada (NSERC)
- University of Michigan Aerospace Engineering Department
Questions?

NASA’s First Deep-Space Internet

Photo Credit: NASA JPL Website