SSDLCAM

Stanford’s Space and Systems Development Laboratory

Professor: Andrew Kalman
Presenters: Joe Johnson, Giovanni Minelli, Ashish Goel
Cubesats and Cameras?

Cubesats historically have had very limited imaging capabilities

- Low processing power
- Inaccurate pointing
- Power consumption constraints
- Limited data downlink

- Poor support for interconnectivity
- High-end cameras don’t fare well in space
SSDLCAM

1.5U Payload

• Primary payload consists of high-resolution imager paired with high-end processing
• Integrates with stand-alone bus from industry partner (with attitude control)
• Part of Cubeview mission with launch in Q2/Q3 2010

Applications

• Vegetation / algae bloom monitoring
• Oil spill tracking
• Forest fire detection
• Pollution monitoring
• Land mass characterization
System Architecture

- Lippert Cool Spacerunner LX800
 - PC/104 SBC (fits 1U dims)
 - 500 MHz AMD Geode
 - 256 MB RAM, 2 GB SSD
 - Linux Debian 5 OS
- TCP/IP communications
- USB 2.0/RS232 support
 - Modular and expandable
 - 2.5 W allotment/peripheral
- LPT used for device control/fault management
System Architecture

Bus

TCP/IP, 5V

CPU, 2 GB SSD, Linux, TCP/IP

USB/5V, LPT devices, PL Connections, Fault management

5/12V

Camera

USB/5V/12V

Flash Experiment HEPL

USB/5V

EED

USB/5V

CubeView Payload
Imaging Hardware

- Pumpkin camera
- Kodak color interline CCD
- 11 MP resolution
- USB 2.0 interface
- 12 V external power
- 520g
Imaging Software

- Open Source Software
 - Linux 2.6 (x86)
 - Open source driver
 - OpenCV
 - GraphicsMagick

- Advantages
 - Abstraction
 - Leverage existing tools
 - Rapid development
 - Ease of development

System Applications instead of System Firmware
Imaging Data Flow

- Camera Driver
- Control Script
 - Metering Algorithm
 - Picture Capture
 - Image Pre-Processing
 - Compress High-Res
 - Compress Thumbnail
 - Science Processing

- High-Res Image
- Thumbnail Image
Flash Memory Reliability Experiment

• Aim
 ▪ Characterize susceptibility of flash memory in space environment
 ▪ Number of SEUs and burnouts
 ◦ As a function of time
 ◦ As a function of position in the orbit

• Hardware
 ▪ 4 Atmel 64Mb serial Flash memory chips
 ▪ 2 shielded and 2 unshielded
 ◦ Modeled in SPENVIS
 ▪ Mounted on nadir surface cover plate
 ▪ Shielded MSP430 microcontroller
 ▪ USB 2.0 interface
Energetic Electron Detector

- Lightning \rightarrow Whistler waves (VLF)
- Whistler waves \rightarrow Precipitating electrons
- Precursor to a dedicated future mission

- Hardware
 - Analog front-end board
 - Avalanche photodiode
 - Pre-amplifier
 - FPGA-based signal processing
 - Digital pulse shaping
 - Pulse height measurement
 - Energy histogram
 - High voltage power supply
Additional Science Payloads

• Possible additional payloads
 ▪ VHF signals from micrometeoroid impacts
 ▪ Space qualification of UV-LEDs and Photodiodes
 ♦ Possible use for charge mitigation on LISA
How do they all fit together in 1.5U?
Conclusions

• We’re able to put a camera on a Cubesat
• Open architecture simplifies programming and compatibility with other standards
• Plug-and-play environment with multiple experiments allows for rapid development
Questions?