Development of a Deployable Gravity-Gradient Boom CubeSat

Mark Silver, Ben Dobson, Pete Warren
(781) 684-4368, pwarren@foster-miller.com

Gerry Shaw, Scott Williams, Victor Aguero
SRI

2009 CubeSat Developers' Workshop
Cal Poly, San Luis Obispo
April 22-25
Outline

- Introduction
 - Foster-Miller/QinetiQ North America
 - Flexible composite materials
 - Elastically deployed structures and microsat systems
- Gravity-gradient Solar Array Boom (G-SAB)
 - Cubesat system need
 - Design approach
 - Current design
 - Anticipated performance
- Future development plans
Foster-Miller/
QinetiQ North America

- Large collection of small businesses
- Products in robots, armor, air delivery, sniper detection, wearable electronics
- R&D in advanced materials, electromagnetics, structures, sensors, C4ISR
- Engineering services in many different industries
Flexible Composite Materials

- Composite materials have many desirable engineering properties
 - Stiffness, strength
 - Thermal stability
- Proper matrix selection and shell design eliminates both material yield and plastic creep as design concerns
- All materials used have been previously space qualified and flown: 20 years of material flight heritage
- Resultant shells are extremely efficient at carrying both tensile and compressive loads
- Fabricating thin shells of material allows for the repeated elastic bending of curved shells
- Curved shell “tape” hinges replace hinge line, actuator, and latch with single, lightweight component
- Hinge deployment can be passively damped to reduce deployment rates
Lightweight Elastic Deployable Structures

- 0.15 kg/m² 3D Isogrid
- 175:1 Volume expansion

- 45 g/m Isogrid boom
- 28 g structure

- 14 gm/m Isogrid column
- 1.7 kg structure

- 90 kg load
Deployable Micro-Sat Systems

- Exploration of ways to give picosats the capabilities of normal sized satellites
- Deployment of traditional spacecraft appendages
 - Solar arrays
 - Antennae
 - Remote sensors
- Picosat scales pose interesting challenges and opportunities
 - Non-linear structural scaling
 - Mechanisms
 - Flexible materials
- Current work focusing on a deployable gravity-gradient CubeSat
Gravity-gradient Solar Array Boom System Need

- Cubesats are chronically under powered
 - Limited array area
 - Limited array pointing
 - Orbital average power of 3U cubesat is ~6 W
- Attitude control of cubesats taxes resources
 - Occupies volume
 - Active control requires power
- Gravity-gradient boom potentially provides solution
 - Deployed boom provides array area
 - Gravity gradient controls two out of three rotational angles
 - Needs large boom with mass concentrations on either end
 - Differential in gravity pull aligns boom with vector towards earth
What is Gravity Gradient Stabilization?

- Objects stay in orbit because of the balance between gravitational forces and centrifugal forces.
- These forces are not balanced in portions of the spacecraft away from the center of mass, along the gravity vector:
 - Further away from earth, the net force is up
 - Closer to the earth, the net force is down
- Spacecraft will naturally align themselves with their maximum moment of inertia along the radius vector.
- Intentional selection of mass properties maximizes this effect:
 - ‘Dumbbell’ shape and mass distribution
 - Lightweight, long central boom
- Combination of G-G with magnetic torquers provides stabilization:
 - Mag-Torque damps oscillations
 - Allows recovery in case of inversion
G-SAB Approach

- Strain energy deployment
 - No power required
 - Mechanical timer and release latch
- Boom packages around outside of standard cubesat
 - Does not impact design of ‘standard’ systems
 - Starts generating power before deployment
- Multiple options for deployment
 - Accordion
 - Z-fold
 - Outer wrapped
- Selected outer wrap back and forth approach
Back and Forth Wrapped Approach

- Split 3U cubesat into two 1.5 U sections
- Boom wraps up and down the long axis of the combined 3U package
 - 7 x 3U panels
 - 3 x 1 U panels
 - 1 x 90° bend provides multiple angle sun exposure
- Back and forth wrapping uses maximum possible launch volume
 - 5 of 6 sides
 - Only two panels per side to maximize panel thickness
- Panels stow in the 6.5mm protrusion allowable in the cubesat specification
 - 730 cm³ extra volume (22%)
 - G-SAB uses this for the boom and for the restraint system
Back and Forth Wrapped Solid Model: Deployed

All possible solar panels not shown
Back and Forth Wrapped Concept:
Basic Deployment Process
Full Structural Prototype
Gravity Gradient Provides Effective Passive Stabilization in 2 out of 3 Angles of Orientation

A 2-meter G-SAB with 2x 1.5U cubesats provides a reliable stabilization about a 10 degree band from vertical.
Solar Power Estimation

- G-SAB provides large area for power generation
 - 0.39 m² total surface area
 - Maximum projected area perpendicular to the boom axis at any instant is 0.11 m²
 - Minimum is 0.07 m²
 - Average around the yaw angle is 0.1 m²

- Spacecraft tracks with gravity vector around the orbit
 - Standard α-angle progression
 - Earth’s shadow covers one of the nulls
 - Orbital average illumination factor is 45%

- Actual additional power generated depends on selection of cells
 - Orbital average of 0.045 m² of projected solar array area
 - Solar constant of 1.37 kW/ m²
 - 23.7 W orbital average power, 60 W peak with triple junction cells
 - 7.3 W orbital average power, 20 W peak with thin film cells
G-SAB Anticipated Performance Parameters

- Deploys from 2 standard 1.5U CubeSats
 - Only fills volume available outside of CubeSats
- 2.4 m long gravity-gradient boom possible
 - Provides passive stabilization in LEO to within 10 deg of vertical
- Boom deploys with local stiffeners
 - 2 Hz first mode
 - Stiffer is possible if required
- Boom includes integrated solar arrays
 - Provides up to 0.39 m² of solar array area
 - Average projected area of 0.13 m²
- Solar cells on both sides of panels provides greatly increased solar array area
 - Max of 60 W
 - Additional orbital average power in LEO of 20+ W
Future Development Plans

Basic Gravity-gradient Solar Array Boom

- **Design**
 - Inclusion of wiring harness
 - Launch restraint

- **Manufacturing**
 - Fabrication with flight-like materials
 - Inclusion of cells and wiring

- **Testing**
 - Offloaded deployment testing
 - Post deployment performance
 - Stiffness
 - Strength
 - Electrical performance

Exploration of Technology’s Potential

- **Longer booms**
 - Thinner, nested structures
 - Using portions of the main spacecraft body

- **More power**
 - Active control of yaw
 - All arrays on one side

- **Other applications**
 - Antennas
 - Magnetometer booms
 - Power only for active ACS cubesats
 - ???