UniCubeSat

Filippo Graziani, Fabio Santoni, Fabrizio Piergentili, Maria Libera Battagliere, Francesco Guarducci, Fabrizio Paolillo, Luigi Ridolfi, Chantal Cappelletti

Scuola di Ingegneria Aerospaziale, Università di Roma “La Sapienza”,

2009 CubeSat Developers' Workshop
Cal Poly, San Luis Obispo
April 22-25
Main UNICubesat Experiment

- Local, not orbit average, in situ thermosphere neutral density measurement using the Broglio drag balance concept
- School of Aerospace Engineering of University of Rome tradition in Aeronomy: San Marco satellites
- GAUSS group experience in university satellites
San Marco 1
December 15, 1964

S. Marco Equatorial Range

Gruppo di Astrodinamica dell’Università degli Studi “la Sapienza”
UNISAT microsatellites

Unisat
26 September 2000

Unisat-2
20 December 2002

Unisat-3
29 June 2004

Unisat-4
26 July 2006

Gruppo di Astrodinamica dell’Università degli Studi “la Sapienza”
At present GAUSS is developing three educational projects:

UNISAT-5 **UNICubeSAT** and **EduSAT**

UNISAT-5 based on the UNISAT BUS

UNICubeSAT

EduSAT
The Drag Balance concept

\[M \]

\[m \]

\[F \]

\[\text{Accelerometer} \]

\[\text{Drag Balance} \]

\[x_a = \frac{m}{M + m} \frac{F}{k} \]

\[x_b = \frac{M}{M + m} \frac{F}{k} \]

\[\text{Mass factor gain:} \quad \frac{x_b}{x_a} = \frac{M}{m} = 100 \div 1000 \]
San Marco implementation

- Spherical satellite spin stabilized
- Two redundant measurements

\[F_{BX} = \frac{1}{2} \rho S c_D v^2 \cos(\tau_0 t) \]
\[F_{BY} = \frac{1}{2} \rho S c_D v^2 \sin(\tau_0 t) \]
UNICubeSAT implementation

The satellite and drag balance aerodynamic forces:
Aerodynamic coefficients are odd functions of the angle of attack.
Drag balance displacement

The drag balance equation of motion is:

\[\ddot{x} + \omega_n^2 x = \frac{1}{2} \frac{\rho v^2 S}{m_{BAL}(1 - \mu)} \left[C^{(N)}_{BAL}(r_0 t) - \mu C^{(T)}_{SAT}(r_0 t) \right] \]

\[\mu = \frac{m_{BAL}}{m_{SAT} + m_{BAL}} << 1 \]

\[\omega_n^2 = \frac{k}{m_{BAL}(1 - \mu)} - r_0^2 \approx \frac{k}{m_{BAL}} \]

Second order oscillator where the forcing term contains the drag coefficients, which vary periodically at the spin frequency.

The drag balance displacement contains:

- Drag balance natural frequency \((\omega_n >> r_0) \)
- Spin frequency + odd harmonics \((r_0, 3r_0, 5r_0 \ldots) \)
Numerical simulation

Displacement

![Displacement graph](graph_image.png)
Frequency content of the displacement

- Spin frequency
- Spin frequency harmonic
- Drag balance frequency

PSD (Normalized)

Frequency content of the displacement

Gruppo di Astrodinamica dell’Università degli Studi “la Sapienza”
Filtered signal at spin frequency
Density evaluation from the amplitude of the spin frequency harmonic of the displacement x_1:

$$
\rho = \frac{2m_{BAL}(1 - \mu)(\omega_n^2 - r_0^2)}{v^2 S A_1(C_{BAL})} x_1
$$

- x_1 = amplitude of the spin frequency harmonic of the drag balance displacement
- $A_1(C_{BAL})$ = amplitude of the spin frequency harmonic of the forcing term
Density evaluation error budget

\[
\frac{d\rho}{\rho} = \frac{dm}{m} + \frac{d\left(\omega_n^2 - r_0^2\right)}{\left(\omega_n^2 - r_0^2\right)} + \frac{dx_1}{x_1} - 2 \frac{dv}{v} - \frac{dS}{S} - \frac{dA_1(C_{BAL})}{A_1(C_{BAL})}
\]

\[\text{0.1\%} + \text{1\%} + \text{1\% + 2(5\%) + 0.5\%} + \text{15\%} = 28\%\]

- Temperature effect on drag balance spring stiffness
- Thermospheric winds
- Drag balance displacement measurement error
- Attitude
- Temperature
- Accommodation coefficients (diffuse vs. specular reflection)
- Gas species (height dependent)
Critical aspects of the experiment

- Scaling down the drag balance implementation from the original 200kg satellite, down to 1kg
- Drag balance release mechanism
- Drag balance and satellite attitude motion coupling: center of mass position and principal axis of inertia orientation (balancing procedure)
- Reconstruction of dynamic pressure from raw data (filtering procedure) and uncertainties in aerodynamic coefficients introduced by the cube shape and monodimensional implementation
- Instrument well suited for altitudes below 350km, adapted for 350-450km range
- Radiation environment near the apogee (1400 km)
- Instrument test and calibration
Displacement sensor

Measurement range ±0.8 mm
Accuracy: 2 μm

Subminiature controller
Sensor calibration

Gruppo di Astrodinamica dell’Università degli Studi “la Sapienza”
Displacement measurements

balance sensor measures [mm]

palmer calibre measures [mm]
Sensor measures linear fitting

\[y = 1.1x - 0.2 \]
Sensor measures polynomial fitting

\[y = 0.0027x^5 - 0.014x^4 - 0.066x^3 + 0.17x^2 + 1.1x - 0.34 \]

5th degree: norm of residuals = 0.11159
Drag balance ground calibration set-up

Compressed air bearing reduces friction

1/1000 weight

Variable angle Inclined plane
Drag balance ground calibration set-up
UNICubeSAT configuration

UNICubeSAT in stowed configuration

UNICubeSAT electronics packs assembly
UNICubeSAT drag balance and antenna release system

Thermal cutter system already qualified for flight on DNEPR LV
UNICubeSAT OBDH scheme

- Balance displacement sensors
- Flash memory for data storage
- MODEM + HDLC protocol
- UHF transceiver
- Magnetic coils
- μ-processor
- Switches
- A/D
- SPI
- Tone decoder
- Temperature, voltage and current sensors
UNICubeSAT OBDH electronics board

Tested on BEXUS 7 flight
October 2008
Wooden mock up of UNICubeSAT on the balancing test system
- Center of mass position
- Principal axis of inertia

UNICubeSAT magnetometer

UNICubeSAT magnetic coils prototype
Control law: minus B dot

It controls the spin axis orientation and spin angular rate rate using magnetometer readings only.

Attitude Numerical Simulations

Graph showing the angle between the satellite spin axis and orbit normal over time. The graph plots degrees on the y-axis and time (in minutes) on the x-axis.
Conclusions

• The instrument error budget at launch is about 30%
• Calibration of drag coefficient in orbit (TLE, laser ranging?) could reduce the measurement error after a few time in orbit
• At present in situ air density measurements have been obtained by very expensive geodetic satellites at high altitudes.
• Our main goal remains student education
• UNICubeSAT represents an affordable sensing system despite the CUBESAT bus on board resources constraints
• It could be a testbed for an in situ air density measurements satellite network to achieve simultaneous measurements in different locations