Far Horizons
From high altitude ballooning to CubeSats
at the Adler Planetarium

Mark Hammergren, PhD
Geza Gyuk, PhD
Overview

• The AdlerSpace group at the Adler Planetarium in Chicago was formed three years ago with the goal of directly involving our visitors and the general public in space exploration.

• Initial plans were to build and operate CubeSats.

• High altitude ballooning was seen as a way of developing individual and institutional expertise and infrastructure necessary for satellite work.

• The Far Horizons ballooning program has since evolved into a very valuable part of our public outreach and education efforts, in its own right.

• To date, we have launched 19 missions, most of them involving volunteers and students in all phases of the design, construction, launch and recovery of balloon experiments.

• We maintain our interest in orbital missions, and are aggressively pursuing plans to begin CubeSat work next year.
Far Horizons Support Hardware

- General payload configuration derived from designs in Paul Verhage’s Near Space manuals
- Key element is GPS / APRS transmitter
 - Byonics Micro-Trak 8000, 2M, 8W with Garmin GPS-18 receiver
 - Big Red Bee Beeline GPS 2M HP with Trimble Lassen IQ GPS
- Kenwood TM-D700A vehicle-mount radio
- PC-based UI-View32 APRS software / Undertow Software Precision Mapping Streets and Traveller
- Kaymont Sounding balloons (usually 1200 - 1500 g)
- Rocketman parachute
Experimental Hardware

- Rack-mount internal frame for experiment cards (though some concern this was detuning our GPS antenna)
- Parallax Basic Stamp 2 Homework Board used to read sensors and record data (onto EEPROMS or flash drive)
- Student-built experiments have included:
 - Variety of temperature / pressure / light sensors
 - Geiger counter
 - Digital cameras (triggered by Basic Stamp)
- Video cameras
 - Aiptek IS-DV2
 - Canon Vixia HF10 HD
- GPS position/altitude provides wind speed and ascent/descent rate profile
 - Atmospheric drag during descent can be used to determine air density
Typical flight profile

Ascent:
- Relatively uniform speed ~ 800 - 1300 fps
- Max. altitude around 90 - 100,000 ft.
- Atm. Pressure ~ 0.01 atm
- Duration around 90 minutes

Descent:
- Initial descent rate after burst ~ 100 mph
- Descent slows with increasing air density
- Duration around 30 minutes
Ice floes in Lake Michigan in February

(taken at ~100,000 ft., 02/23/2008)
Student Programs

- Astro Science Workshop
 - summer program for high school students funded by NSF
- Teen Astronomers Camp
 - middle school summer program
- Summer internships for undergraduates
 - funded by Illinois Space Grant Consortium
- Illinois Math and Science Academy mentorship
 - Two high school students, one day a week during the school year
Benefits of a ballooning program (1)

- Development / logistics:
 - Relatively low cost per mission
 - (< $250 expendable supplies per launch)
 - Total reusable hardware costs < $1000
 - Short development schedule per mission
 - Teen Astronomers Camp runs for 5 days, from (simple) experiment construction through launch and recovery
 - Students / volunteers are involved and invested in every aspect of the mission
Benefits of a ballooning program (2)

- **Pedagogical:**
 - Student work is hands-on, mission success depends on their effort
 - Students collect real data
 - Launch and recovery - and data analysis - are exciting and inspiring
Benefits of a ballooning program (3)

- **Professional:**
 - Permit you to develop dynamic and engaging courses
 - Programs are attractive to funding agencies
 - High-visibility, interesting to the public
 - Full-page coverage in Chicago Tribune, video featured on Today Show
 - Build transferrable skills

Peeps in Space!
(as seen on YouTube)
The Future: Ballooning

- Far Horizons balloon program will continue as an important element of our work
- Promote public distribution of effort in hardware / software design and construction
 - Analogous to Open Source model or “Citizen Science” initiatives: “Citizen Engineering”
 - Current projects include:
 - Cutdown system
 - 900 MHz high-speed two-way datalink
 - Custom tracking software incorporating real-time touchdown location prediction
The Future: Satellites

- **CubeSat effort will begin within the next year**
 - First satellite will be an Earth imager
 - Issue: how to promote “Citizen Engineering” of satellites and maintain ITAR compliance?
 - Basic principles of this first effort:
 - Use as many COTS components as possible
 - Improve communications coverage
 - Visitor interaction with satellite will require frequent communications
 - Need to support network of ground stations
 - Build a station with international academic partner optimized for geographic location
 - **Issue of attitude stabilization in proper orientation for 1U CubeSat**
 - Drive slow tumble with magnetorquer / reaction wheel, time exposures using sun / Earth sensors
Visit the Far Horizons blog:

• http://farhorizons.wordpress.com/