TEMPO3

First step to the Fourth Planet
Overview

• Humans to Mars
• Humans in Space
• Artificial Gravity
• Tethers
• TEMPO³
Humans to Mars – How?

- Not “one huge ship”
 - W. von Braun
- Send return craft first
- Human crew, next opportunity
- Leaves infrastructure behind
- Live off the land
 - Return propellant
 - Water
 - Oxygen
- Reduce costs to tens of $B

Source: *The Case for Mars* by Zubrin/Wagner, 1996
Humans in Space
Lack of Gravity

• Most known-about difference in space life
• Effects
 – Muscle atrophy
 – Bone deterioration
 – Blood changes
• Exercise helps, but…
• Crew arriving on Mars must be physically ready
Artificial Gravity

• Take gravity along!
• Possible with smaller mission architecture
• Upper stage as a counterweight
• Spin end-over-end
• Simple in concept, but
 – Tether dynamics
 – Velocity changes
Tethers
Previous Artificial Gravity Efforts

• NASA experimented in the 1960s
• Gemini 11 + 12 used target vehicle (Agena) as counterweight
• Small amount of gravity generated
• Apollo and shuttle/station eras were not conducive
Tethers
Other Efforts

• Multiple potential uses in space
• Many tried with varying success
 – Power generation
 – Orbit change
 – Payload de-orbit
• No recent efforts for artificial gravity
TEMPO³

Goals

• “Build and test a CubeSat satellite to demonstrate artificial gravity”
• Inform the public
• Bring artificial gravity back into architectures
• Build knowledge base for future, more complex missions
TEMPO3
Mission Sequence

• Launch as secondary payload with other CubeSats
• Spin up
 – Method under review
• Deploy tether
• Transmit generated gravity measurement to receiver stations on Earth
• Other actions possible, but limited
PR/Fundraising/Science Submission

- “Join the mission” PR Effort
- Recommended Donation
- Originally Planned for mini SD Ram Chip
- Name Entered on a List for Transmission from TEMPO3
- Transmitter Functions in 10m band
 - Susceptible to Ionospheric Interference
 - Allows Exploration of Space Weather
Sub-Mission Technical Details

- Rotating Spacecraft
 - Constantly Changing Antenna Angle
- Network of Listening Stations
 - Timing Possibilities?
 - Contest?
- Multi-part Signal Helps Strength Estimation
 - Names
 - Tones
 - Beeps
- Orbit Unimportant
 - All Provide Varying Angles
Technical Considerations

• Spin-up method
 – Thruster (cold-gas)
 – Momentum wheel
 – Magnetic coil

• Transmission Signals
 – Likely 70cm Band. Possibly two Frequencies
 – Additional 10m PR/Science Signal Possible

• Spacecraft Software Development
 – Coding relatively simple, considering competition

• Spacecraft Integrator
 – Common bus designs include many required features
Development Timeline

• Kickoff in Aug ’08
• Concept developed, initial design work
• High-altitude balloon flight test planned late 09
• Use experience with balloon flight to plan next steps
• Launch in ’11
• Follow-on satellite
Outreach

• Split into at least three areas
 – Education – Lesson plans, student contests
 – Popular media – “Name in space”, museums
 – Focused organizations – Amateur radio, pilots

• Internet-involved
 – Video updates
 – YouTube ‘shorts’ describing key concepts
Future Plans

• TEMPO³ demonstrates some very basic aspects of artificial gravity generation
• Many other challenges exist
 – Realistic spin-up
 – Velocity change while spinning
 – Attitude change while spinning
 – High speed communications while spinning
 – Separation at Mars approach
• A future, larger, experiment can test these
Thank you for your time!

Tom Hill tomhill@marssociety.org KB3RXN
The Mars Society

- Founded in 1998
- Annual conferences
- Non-profit
- International
- Formation spark caused by interest in Robert Zubrin’s book *The Case for Mars*
Mars Society’s Other Projects

• Three Mars Research Stations Built
 – FMARS – Canadian Arctic
 – MDRS – Utah Desert
 – Additional – Built, but in storage

• Spaceflight plans
 – Archimedes - hitchhiker payload on Mars mission
 – Mars Gravity Biosatellite – expose mice to Mars gravity