THE UNIVERSITY OF TEXAS AT AUSTIN

WHAT STARTS HERE CHANGES THE WORLD
Stochastic Attitude Control of a CubeSat

Jason Moore
Advisor: Dr Robert H Bishop
UT Austin Satellite Program

• Lonestar
 – Joint NASA / UT Austin / Texas A&M
 – Multi-year program
 – Paradigm

• Artemis
 – University Nanosat 5
 – Autonomous rendezvous
 – Target & Chaser
UT Austin Satellite Program

- **Wipsat**
 - LabVIEW Embedded
 - Blackfin CPU
 - TinyBoard 28x28mm
 - CAN bus for low rate sensors
 - CMOS camera
 - GPS

www.tinyboards.com
UT Austin Satellite Program

• New Ground Station
 – 2 UHF/VHF Antennae
 – 3m Dish
 – HAM radio equipment
• Sensors & Actuators Lab
 – Control Moment Gyro
 – IMU
 – Sun Sensor
 – Image Processing
GN&C

• Guidance
 – Where am I going?

• Navigation
 – Where am I?

• Control
 – How will I get there?
Control

- Model of the real world
- Model is nonlinear
- Linearize about a nominal trajectory
- Classic linear state space model

\[
\begin{align*}
\dot{x}(t) &= A(t)x(t) + B(t)u(t) + w(t) \\
y(t) &= C(t)x(t) + D(t)u(t) + v(t)
\end{align*}
\]
Control

- Noise will be dealt with in a Stochastic (non-deterministic) manner, using Random Variables.
- Noise is assumed white (zero mean, uncorrelated), however, biased noise with color can be transformed into white noise with a bit of extra work.
Tracking and Regulation

• For a given reference input, find the control such that the controlled variables track the reference input, accounting for:
 – Plant disturbances are unpredictable
 – Plant parameters may change or may not be precisely known
 – Initial state is unknown
 – Observed variables may not give direct information about the state of the plant, and are corrupted
 – Reference input is not known a priori
Stochastic Linear Optimal* Regulator Problem

Consider the system,

\[\dot{x}(t) = A(t)x(t) + B(t)u(t) + w(t) \]
\[z(t) = M(t)x(t) \]

and the performance criterion,

\[
J = E \left\{ \int_{t_0}^{t_1} \left[z^T(t)R_3(t)z(t) + u^T(t)R_2(t)u(t) \right] dt + x^T(t_1)P_1x(t_1) \right\}
\]

* Optimal ≠ Good
Stochastic Linear Optimal* Regulator Problem

When \(w(t) \) is a white noise signal, the solution to the Stochastic Linear Optimal Regulator problem is the same as the deterministic LOR problem, i.e.

\[
\begin{align*}
 u(t) &= -F(t)x(t) \\
 F(t) &= R_2^{-1}B^T(t)P(t) \\
 -\dot{P}(t) &= M^T(t)R_3(t)M(t) - P(t)B(t)R_2^{-1}(t)B^T(t)P(t) + A^T(t)P(t) + P(t)A(t) \\
 P(t_1) &= P_1
\end{align*}
\]

The presence of noise does not alter the solution, except to increase the minimal value of the performance index, \(J \).
Hardware

• Sensors
 – Gyros, accelerometers, star trackers, sun trackers, horizon sensors, etc…

• Actuators
 – Thrusters, reaction wheels, control moment gyros, torque coils/rods, gravity gradients, etc…

• Computing
 – Floating point hardware is a must!
Practical Implications

• Finite horizon (leads to mode switching)
• Stability
• Power consumption
• Nonlinear effects
 – un-modeled dynamics (damping!)
 – actuation limits
• Implementation is typically discrete time
• Momentum dumping
Simulation

• Simple Euler equations (no external torques), 3U CubeSat, no actuation model
• Notice how the control gets worse near final time - result of controller trying to get to zero
• 3 runs, different random noise
• Nominal trajectory is nadir pointing
Recent Developments

• Freescale MPC5200 based TinyBoard
 – 400 MHz w/ FPU
 – Lots of I/O
 – 35x42 mm
 – www.tinyboards.com

• German pico-reaction wheel
 – www.astrofein.com

www.tinyboards.com
Navigation

• Not enough time today.
• Hopefully, will present Nav in August at SmallSat CubeSat Workshop.
• Teaser,
 – Solution to optimal state observer (estimator) is of the same form as control solution.
 – This solution is called the Kalman Filter, but, in practice, use Extended KF, which is miles away from theory. Go Figure.
\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0
\]
\[
\frac{\partial }{\partial p_i} (\mathcal{H}) = \dot{q}_i
\]
\[
-\frac{\partial }{\partial q_i} (\mathcal{H}) = \dot{p}_i
\]