Cubes That Help Industry Out of the Box

April 20, 2007

Hobson Lane
Northrop Grumman Corporation
Universities Complement Industry

- **Decentralized**
 - Professors/students given independence
 - Youthful, dynamic environment
 - Sharing – theses, papers, reports

- **Education Focus**
 - Technology exploration is valued
 - Sufficient $$$ for capital investment (facilities, equipment)
 - “Science projects” flourish
 - Some emphasis on problems with large economic impact

- **Embrace Risk**
 - Explore “home run” ideas/concepts
 - No fear of failure – “lessons learned”
 - Paradigm shifts

- **Centralized**
 - Rigorous processes & procedures
 - Experienced, wise, risk-averse engineers
 - Territorial – patents, trade secrets, etc

- **Performance Focus**
 - Near-term technologies and designs
 - Must make $$$, each and every quarter
 - Few “science projects” allowed
 - Access to capital (equipment, factories, money)

- **Risk averse**
 - Simple, low-risk designs
 - Small, incremental adjustments to designs and processes
Universities are an Idea Breeding Ground

- Hotbed of idea cross-pollination
- Churning flood of ideas and information
- Supercharging for the space industry

- New designs
- New products
- Efficient batteries
- Lighter mechanisms
- New GNC ideas
- Faster algorithms
CubeSats Provide Focus

- CubeSats help harness idea churning to meet space industry needs
- Small enough to be manageable by a university
 - Allow significant individual contribution
 - Students get to see results fast
- Large enough to provide valuable technical insight
 - Enough system complexity to require SE and architecture thinking
 - Enough diverse subsystems to provide something for everyone
 - Students get to work on their pet projects
 - Professors get to insert their favorite experiments
CubeSats vs. IndustrySats

- 1-2 yr to build
- 0.1-1 yr design life
- 1-3 kg
- 1-3 L
- 1-3 W
- $40-80K per kg to build
- $40-80K per kg to launch

- 4-8 yr to build
- 2-20 yr design life
- 500-5,000 kg
- 1,000-10,000 L
- 1000-15,000 W
- $40-80K per kg to build
- $40-80K per kg to launch
SE Look at CubeSats

- **Short life and low reliability enables**
 - High mass efficiency

- **Power efficiency**
 - Large surface area gives more room for surface-mount solar panels and antennas
 - Lack of gimbals degrades solar and RF efficiency by 90%
 - CubeSat size is just about at the cross-over where surface-mounted apertures can compete with gimbaled systems

![Areal Efficiency Graph](chart.png)
Example CubeSat Project Results

- Northrop Grumman CubeSat project with CalPoly and Stanford
- Produced sophisticated system trade tools
- Valuable, deep survey data, plus new component ideas

Linked Excel Database

- *Subsystem Architecture Trades.xls*
- *Point Design Architectures.xls*
- *Subsystem Trades*
- *Point Designs*
- *Subsystem Component Data*
- *Point Design Trade*

Subsystem Architecture Trades.xls
Point Design Architecture Trade.xls
Example CubeSat Technology Spinoff

- Discovered library of public domain software for image processing…
 … from the medical industry!

- Innovative technique for efficient scene matching
What can you do?

- Apply CubeSats to real world needs
 - Communication
 - Surveillance
 - Astronaut Assistance
 - Exploration
 - Science

- Try something new
 - Show us a new way to do …
 - Propulsion, navigation, communication, attitude control

- Leverage your other resources
 - Nanotech, biotech, microelectronics