SRI International

SRI is a world-leading independent R&D organization

- Founded by Stanford University in 1946
 - A nonprofit corporation
 - Independent in 1970; changed name from Stanford Research Institute to SRI International in 1977
- Sarnoff Corporation acquired in 1987
 (formerly RCA Laboratories)
- 2,000 staff members combined
 - 900 with advanced degrees
 - More than 20 offices worldwide, including Sarnoff India and SRI Taiwan
- Consolidated 2006 revenue: $411 million
SRI Focus Areas

Multidisciplinary teams leverage developments from SRI’s core technology and research areas

- Advanced Materials
- Microsystems
- Nanotechnology
- Engineering and Systems
- Information Technology
- Biotechnology
- Health, Education, and Economic Policy

SRI’s Value Creation Process™
Deep Technical Capabilities

SRI applies interdisciplinary skills to provide solutions to client needs

- Information and computing
- Networks and communication
- Automation and robotics
- Intelligence systems
- Data collection and measurement
- Homeland security
- Automotive
- Energy and environment
- Marine science and technology
- Advanced materials and structures
- Medical devices
- Computational biology
- Biosciences
- Product development
- Education, health, and economic policy
- Complementary capabilities at Sarnoff
- Speech recognition and translation
SRI Technology and Inventions

- The First Computer Mouse
- Micro-volcanoes for Protein Analysis
- Handheld, Speech-based Language Translation
- High-performance Polymers
- SRI-operated Sondrestrom Research Facility in Greenland
- Hydrogen Fuel Cells
- Molecularly Imprinted Polymer Gas Sensors
- Mobile Ad Hoc Wireless Networks for First Responders
SRI Space Engineering Systems Laboratory

- Picosatellite Payload Development
- Earth Station
- Life Test System
SRI Big Dish Antennas

• **150-foot dish**
 - Tracking capability: 1°/s
 - Resolution: 0.01°
 - Elevation: 3° to 87°
 - Frequency: Up to ~1.5 GHz

• **60-foot dish**
 - Tracking capability:
 - 4°/s azimuth
 - 1°/s elevation
 - Resolution: 0.04°
 - Frequency: Up to ~3 GHz
Picosatellite Communications
Current CubeSat Communications Paradigm

- **Communication frequencies**
 - Amateur
 - Dedicated
 - ISM

- **Equipment**
 - Off-the-shelf components
 - Amateur radios
 - ISM radios

- **Earth stations**
 - Amateur stations
 - Individual lab stations

ICOM 910H
Lessons Learned from Previous Launches

• Large numbers of small satellites
 – Problems with satellite localization

• Similar frequencies
 – Satellite discrimination issues

• Higher frequencies
 – Require better pointing accuracy

• Spread spectrum radios
 – Latency and handshaking make communication more difficult
Future Directions in Picosatellite Communications

• Upgraded Current Capabilities
• Inter-Satellite Communications
• Ground Station Networking
• Software Defined Radio
• Phased Array Antennas
Upgraded Current Capabilities

• Higher Frequencies
 – Potential for greater throughput
 – Better pointing accuracy required
 – Fewer off-the-shelf resources

• Optical Frequencies
 – No FCC license necessary
 – Potentially more data throughput

• Antennas
 – Directional antennas provide more efficient radiation patterns
 – Microstrip antennas require very little space
 – Memory alloy structures for deployable antennas
Inter-Satellite Communications

• **Network Standards**
 – Allow for possibility of communication between different types of physical links

• **Ad Hoc Networking**
 – Enables dynamic networking between satellites

• **Better Link Margins**
 – Lower power communications with better data throughput

• **Dedicated Inter-Satellite Frequencies**
 – Allows increased security

• **Data Forwarding**
 – Allows access to real-time data while satellite is not visible

• **Dedicated Communication Satellite**
 – A larger dedicated communication satellite could allow low power picosatellite communications
Ground Station Networking

• Advantages
 – Increased operations for ground station operators
 – More data throughput
 – Takes advantage of idle earth stations
 – Allows participation without individual earth stations

• Disadvantages
 – Requires standard equipment
 – Security concerns
 – FCC licenses require transmission only over US

• GENSO
Software Defined Radio

• Advantages
 – Specialized modulation schemes available
 – Enables multiple comm links on one satellite
 – Enables policy-based communication
 – Requires less dedicated hardware
 – Flexibility

• Disadvantages
 – Much longer development time
 – Not necessarily compatible with other ground stations
Phased Array Antennas

• Phased Array Antennas
 – By delaying the feed to each antenna element, constructive and destructive interference result in the ability to “steer a beam” with very fine precision, and little waste radiation in undesired directions

• Advanced Modular Incoherent Scatter Radar (AMISR)
 – NSF-sponsored installation for space weather
 – Collaborative effort, led by SRI
 – 430 to 450 MHz
Phased Array Antennas

Ground-based

- Beamforming
- Simultaneous tracking of multiple satellites
- Simultaneous tracking at multiple frequencies

AMISR Antenna Elements
Phased Array Antennas

Satellite-based

- **Inter-Satellite Links**
 - Patch antennas on multiple sides could communicate with several satellites in different locations at once
 - Either attitude determination or stabilization could allow dynamic links

- **Satellite-to-Ground Link**
 - Attitude and orbit knowledge enable beam pointing, which means less power is required
Backup Information
Information and Computing

Pioneering next-generation, disruptive technologies

- **Speech**
 - Recognition and translation
 - Natural language understanding

- **Networks and distributed computing**
 - Information security
 - Mobile and wireless communications

- **Artificial intelligence**
 - Intelligent assistance
 - Vision systems
 - Collaborative mobile robots

- **System reliability**
 - Formal methods for design and analysis
 - IC and complex system verification

- **Software systems**
 - Intelligent project planning and tracking
 - Decision aids

1964–1968: SRI’s Doug Engelbart and team invented the computer mouse and demonstrated the foundations of personal computing

Handheld, speech-based language translation
Networks and Communication

Operationally effective systems for government and commercial clients

- **Network-centric systems**
 - Intelligent planning
 - Self-configuring information flows
 - Wireless, mobile, ad hoc networks
 - Modeling and simulation of networks and communications

- **Testing and training**
 - Instrumentation for military testing and training
 - Live-virtual-constructive training systems

- **Intelligent system applications**
 - Distributed speech
 - Distributed natural language
 - Distributed robots

- **Secure networks**
Automation and Robotics
From the world’s first reasoning robot to the latest advances

• Advanced materials for automation
 – Electroactive polymer “artificial muscle”
 – RF (radio frequency) tags

• Robots
 – Inspection systems
 – Micro robots
 – Collaborative robots

• Robotics
 – Video and image understanding
 – Machine vision systems for document understanding
 – Manufacturing and materials handling

• Transport: diamagnetic levitation
 – Ultra-clean transport
 – Medical laboratory automation
Intelligence Systems

Meeting national defense and other needs from field support to end-to-end, secure information management systems

• Signal technology
 – National intelligence processing and reporting systems
 – Advanced signal processing and geolocation algorithms

• Intelligence and information systems
 – Computer tools, simulations, and networks in support of information warfare and tactical intelligence systems
 – Simulation suites for intelligence collection systems

• Communications and signal technology
 – Communications system design, development, signal processing, and testbeds
 – Advanced terrestrial and space antenna systems

• Information operations
 – Offensive and defensive
Data Collection and Measurement

State-of-the-art sensing and information processing

• Radio frequency systems
 – Radio and astronomical measurements
 – Foliage- and ground-penetrating radar
 – Over-the-horizon radar

• Intelligent pattern recognition
 – Radar
 – Multisensor

• Sensors
 – Custom wireless embedded sensors
 – Signal processing

• Environmental impact
 – Analyses
 – Planning and systems design
Energy and Environment
From basic research to pilot tests and commercialization

• Energy
 – Long-life batteries
 – Fuel cells
 – Solar cells
 – Hydrogen fuel generation, storage, and distribution

• Environment
 – Waste destruction
 – Potable water production
 – Biodegradable materials
 – Microsensors and systems
 – Noise suppression and vibration control
 – Ultrasensitive hazardous materials detection
 – Handheld biological and chemical sensors
Advanced Materials and Structures
From basic research to pilot tests and commercialization

• **Materials**
 - Nano materials
 - Polymers
 - Coatings and ceramics
 - High-temperature materials
 - OLEDs (organic light-emitting diodes)

• **Processes**
 - Catalysis
 - Analytical chemistry
 - Optical technologies

• **Microstructures**
 - Nano devices and microelectronics
 - MEMS and NEMS

• **Structural design**
 - Blast containment
 - Structural testing and failure mechanics