SwissCube Project

3rd Annual Cubesat Workshop
April 27, 2006

Prof. Herbert Shea
EPFL Microsystems for Space Technologies Laboratory

Dr. Maurice Borgeaud
Director, Space Center EPFL

Muriel Noca
Space Center EPFL
muriel.noca@epfl.ch

Renato Krpoun
EPFL Microsystems for Space Technologies Laboratory
Outline

• Project and science objectives
• Preliminary mission assumptions
• Project organization (participants + schedule)
• Test and model philosophy
• Conclusion
Project Objectives

- **Goal is to have a Swiss Cubesat in orbit by 2008**
 - Satellite and ground segment defined, designed, built, tested and operated by students
 - Multi-disciplinary, multi-lab, multi-university collaboration
 - Strong educational aspect: student/industry ties, ESA/NASA development phases and standards
 - Budget:
 - ~ $ 200 k (including launch) over 2.5 years
 - already gathered 2/3 of budget
 - High visibility project for Swiss universities and industry partners since it would be the first Swiss satellite launched

- **Two mission objectives:**
 - Science: characterize variability of Nightglow phenomena in intensity and altitude
 - Technology: test and qualify a new Single Photon Avalanche Detector

- **Primary success criteria:** Deliver a fully tested cubesat to launch site

- **Secondary success criteria:**
 1. Launch, close RF link and download telemetry
 2. Receive Science data and characterize operations
Science Objectives

- **Science Objectives:**
 Take comprehensive measurements of the NightGlow Phenomena over all latitudes and longitudes and over a period of 3 months (primary mission) to 12 months (extended mission)

- **Measurements in the 75-110 km altitude with [5] km spatial resolution**

- **Measure two to three bands of emissions in the spectral range of [550 – 880] nm with spectral resolution less than [1] nm**
 - Preliminary bands: 558, 762 and 840 nm

- **Detector**

FIG. 3. Picture of the CMOS-high-voltage SPAD. The circular SPAD and the quenching resistor can be seen on the right-hand side. The low-voltage and the high-voltage parts of the comparator can be seen as well.
Preliminary Mission Assumptions

- **Launch**: DNEPR or VEGA launch vehicles
- **Orbit**: Most likely Sun-synchronous
- **Inclination**: ~ 97 - 99°
- **Orbital Altitude**: ~ 400 - 1000 km
- **Orbital period**: ~ 90 - 105 min
- **Eclipses**: ~ 30 % of orbital period
- **Avg. power**: ~ 1.5 W
- **Mean pass duration**: ~ 10 min
- **Data downlink rate**: ~ 1 kbps
• Key SwissCube subsystem responsibility is spread across several labs and universities. Current partners:
 - EPFL: 10 labs
 - Université de Neuchatel: 3 labs
 - HES Sion: 1 lab
 - HES Yverdon: 2 labs
 - HE-ARC: 1 lab

• Executive Board includes industry sponsors and university representatives

• External reviewers include Swiss industry representative and ESA partners
• Most of the work will be done by the students
 - Concurrent engineering environment
 - Multi-center communication via video conferences

• In each lab one scientific staff is leader of a given subsystem, supervises the student projects on that topic, coordinates with engineering team and provides continuity over time.

• System Engineering Team (SET) provides oversight and coordination.

• Each subsystem will have an expert mentor in industry.
Project Schedule

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EPFL Academic Schedule</td>
</tr>
<tr>
<td>2</td>
<td>Master Projects 2006-2007 winter</td>
</tr>
<tr>
<td>3</td>
<td>Master Projects 2006-2007 summer</td>
</tr>
<tr>
<td>4</td>
<td>Master Projects 2007-2008 winter</td>
</tr>
<tr>
<td>5</td>
<td>Master Projects 2007-2008 summer</td>
</tr>
<tr>
<td>6</td>
<td>Semester Projects 2006-7 winter</td>
</tr>
<tr>
<td>7</td>
<td>Semester Projects 2006-7 summer</td>
</tr>
<tr>
<td>8</td>
<td>Semester Projects 2007-8 winter</td>
</tr>
<tr>
<td>9</td>
<td>Semester Projects 2007-8 summer</td>
</tr>
<tr>
<td>10</td>
<td>IMT Schedule</td>
</tr>
<tr>
<td>11</td>
<td>Schedule EVD</td>
</tr>
<tr>
<td>12</td>
<td>Diploma Project 2006</td>
</tr>
<tr>
<td>13</td>
<td>Diploma Project 2007</td>
</tr>
<tr>
<td>14</td>
<td>CUBESAT Schedule</td>
</tr>
<tr>
<td>15</td>
<td>MOE/Project Presentation to Labs</td>
</tr>
<tr>
<td>16</td>
<td>DPR</td>
</tr>
<tr>
<td>17</td>
<td>SRR + PDR</td>
</tr>
<tr>
<td>18</td>
<td>CDR</td>
</tr>
<tr>
<td>19</td>
<td>GR</td>
</tr>
<tr>
<td>20</td>
<td>AR</td>
</tr>
<tr>
<td>21</td>
<td>Phase D: Pre-phase A</td>
</tr>
<tr>
<td>22</td>
<td>Phase A: Feasibility</td>
</tr>
<tr>
<td>23</td>
<td>Phase B: Preliminary definition</td>
</tr>
<tr>
<td>24</td>
<td>Phase C: Detailed definition</td>
</tr>
<tr>
<td>25</td>
<td>Phase D: Production, Ground Qual and Testing</td>
</tr>
<tr>
<td>26</td>
<td>Phase E: Launch and Utilisation</td>
</tr>
<tr>
<td>27</td>
<td>Phase F: Disposal</td>
</tr>
</tbody>
</table>

Phase A
- Feasibility study, design trade-offs, preliminary design and specifications

Phase B
- Design refinement, component tests, breadboards, system and subsystem level specifications

Phase C
- Detailed definition, EM tests, interface specifications

Phase D
- Flight production, integration, subsystem and system tests

Phase E
- Launch and ops

Timeline

- **2006**: Various tasks, including preliminary requirements review, preliminary design review, critical design review, and qualification review.
- **2007**: Tasks include detailed definition, EM tests, interface specifications, and flight production, integration, subsystem and system tests.
- **2008**: Tasks focus on launch and operations.
Preliminary Test Schedule and Philosophy

The SwissCube is a relatively high-risk low-cost development, but testing will parallel as much as possible a high-reliability mission to ensure success.

Model Philosophy:
- Set of breadboards/mockups in Phase B (Functional Models)
- Engineering Models in Phase C
- Qual Model and Flight Model in Phase D (prototype approach)

Compliant with ECSS as much as possible.
Conclusions

• Today’s programmatic challenge
 - Efficient transfer of information between students over the different phases of development

• Today’s technical challenge
 - Current payload asks for relatively tight pointing and stabilization requirements, and volume requirements
 - System studies and trades are on-going to find solution

• Need for communication with YOU
 - Assume that a great deal of information already exists
 • Parts list, what worked, what didn’t?
 - Experience of Cubesat developments within a university environment
 • What worked, what didn’t?

• Conclusion
 - Starting project in a multi-university environment
 - All advices, sharing of experience are welcome!