PACE
Platform for Attitude Control Experiment

Jiun-Jih Miau and Jyh-Ching Juang
National Cheng Kung University
Tainan, TAIWAN

PACE website: www.iaalab.ncku.edu.tw/pace/
Introduction

Significances of cubesat research

Cubesat research in Taiwan

NCKU: PACE (2003-)
PACE Features

- Mass: Less than 2 kg
- Dimension: 100 x 100 x 200 mm
- ADCS Requirement: 3-axis stabilization
- Payload: MEMS temperature sensor
- Dual on-board CPUs
- TCS: Passive thermal control
- Operating Orbit (TBD):
 - Near-circular orbit 600 km, inclination 98°
- TT&C: Amateur Radio Communication;
 - Up/Down link: 433MHz, Data Rate: 1200bps
 - CW: 144 MHz band
- Power: Body mount solar array & Li-ion battery
- Satellite Life Time: 2 months
- Launch Scheduled: 2004-2005
Characteristics of the PACE

- A double cube design
- Three-axis stabilization for pico-satellites
 - Momentum biased wheel + magnetic coil
 - Sensor suite integration for attitude determination: magnetometer, gyro, coarse sun sensor
- Two CPU design
 - 8051-based CPU: C&DH and ADCS
- MEMS sensor technology demonstration
 - Temperature sensor
 - Coarse sun sensor
PACE Orbit

- Orbit altitude = 600 km, inclination = 97.79°
- Period = 96.69 min, mean contact duration = 657 sec
PACE Payload

- PACE payload: MEMS sensor
 - Temperature sensor
 - Coarse sun sensor
PACE Configuration

- C&DH
- Magnetometer
- ADCS
- EPS
- Gyro sensor
- Coil
- TT&C
- CW

Battery
Wheel
Antenna

X
Y
Z
PACE Operating Mode

- **Boot/Reset Mode**
 - Remove Before Flight On
 - Boot Complete

- **Ground Test Mode (Idle)**
 - Ground Command

- **Ground Command**
 - Low Power
 - Max Contact Time Exceed

- **Normal Mode**
 - No Contact > N days
 - Bit error occurred

- **Launch Mode**
 - Charge completed

- **Power Monitor Mode**
 - Low Power

- **Safe Mode**
 - Charge completed

- **Initial & 3-Axis Mode**
 - Charge completed
A momentum wheel is developed for the 3-axis control of the PACE.
PACE ADCS

Orbit information

IGRF Model

Magnetometer

Gyro

Coarse Sun Sensor

\(\omega_{\text{Body}} \)

\(\Phi, \theta, \Psi \)

\(B_{\text{Body}} \)

\(\omega_{\text{measured}} \)

\(\omega_{\text{estimated}} \)

\(\Theta_{\text{measured}} \)

\(\Theta_{\text{estimated}} \)

Attitude Determination

Kalman filter

S/C Dynamic

Attitude Control System

Disturbance Torque
Summary

Taiwanese Cubesats

<table>
<thead>
<tr>
<th>Cubesat</th>
<th>YAMSAT</th>
<th>PACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development</td>
<td>2001-2002</td>
<td>2003-</td>
</tr>
<tr>
<td>Developer</td>
<td>NSPO</td>
<td>NCKU</td>
</tr>
<tr>
<td>Size/Weight</td>
<td>Single cube, 1 kg</td>
<td>Double cube, 2 kg</td>
</tr>
<tr>
<td>Technology demonstration</td>
<td>system engineering</td>
<td>3-axis control</td>
</tr>
<tr>
<td>C&DH</td>
<td>One CPU</td>
<td>Two CPUs</td>
</tr>
<tr>
<td>Payload</td>
<td>Microspectrometer</td>
<td>MEMS temp sensor</td>
</tr>
</tbody>
</table>
Thank you