Fox 1 Mechanical Design

Robert Davis KF4KSS

2011 AMSAT Space Symposium

Requirements from Cal Poly

- CubeSat Design Specification, Rev 12
 - Base dimensions/tolerances/material
 - Rail width/length/plating
 - Envelope for protrusions (solar panels, antennas, etc)
 - Mass and location of center of mass
 - Contact switch(es) to turn CubeSat off inside PPOD
 - Springs to separate CubeSats when released from PPOD

Access Port location if Umbilical or Safe Plug is used

Requirements from NASA

- LSP-Req-317.01, for ELaNa opportunity
 - Selection of Factors of Safety based on verification method
 - Ventable volume/area <2,000
 - Definition of tiers of environmental testing
 - Selection of materials
 - Dissimilar metals
 - Stress corrosion cracking
 - Fracture control
 - Strengths used in analysis
 - No pressure vessels
 - No propulsion
 - 45 minute timer before deployments/transmissions
 - Vacuum bakeout minimum temp 70° C (or 60° C if hardship)

Requirements from Project

- Maximize solar cells, avionics & experiments
- Antenna deployment is mission critical
- Umbilical & Safe Plug without giving up a solar cell
- Passive magnetic attitude & spinning
 - Magnet aligned with Z axis
 - Hysteresis rods perpendicular to Z axis
 - Izz > Ixx and Izz > Iyy, for spin stability
 - OSR surface strips, for differential solar pressure
- Commonality Fox 1 & 2 (deployable solar panels)

Early Panel Trade

flux

CICs on Panels

Two PCBs: Sides and Top/Bottom CubeSat as required for whip length)

Areas for antenna protrusion and

- Shown with Spectrolab's 26.62 cm² 28.3% UTJ.
- 29.85 cm² appear to fit until other details are considered.

Sheetmetal Walls

- 2-piece bent sheetmetal
- Fewer joints/fasteners
- Maximizes PCB volume
- 5052-H32 bendable with no radius
- Material waiver required with Cal Poly's CDS Rev 12
- No waiver required with KSC's LSP-REQ-317.01
- Need a professional bender due to tight tolerances of widths between PPOD Rails

PCB Stack – Tentative Assignments

Notable Items on PCBs

- RX and GPS Antenna Card
 - 70cm antenna
 - Diplexer (to 70cm and GPS receivers)
 - GPS receiver
 - connector to +Z Top Solar Panel
- Experiment #1 #3
 - If experiment is less than 3 PCBs,
 then it will be "padded" to total 3 PCBs
- Battery #1 and #2 (division is TBD)
 - 3 "C" cells
 - Micro/Mini USB
 - Stereo jack RBF safe plug
 - 4 connectors to 4 Side Solar Panels
 - Magnet(s)
 - Hysteresis rods
- PSU (Power Supply Unit)
 - MPPTs
 - Battery protect
- IHU (Internal Housekeeping Unit)
- RF
 - Receiver
 - Transmitter
- TX Antenna Card
 - 2m antenna
 - Connector to –Z Bottom Solar Panel

PCBs

- 10 PCBs "fill" the interior
- 95x95mm, standard 1/16" thick
- 8mm tall spacers between based on choice of connector
- Clearances:
 - 1.5 mm to side Aluminum
 - 2.5 mm to side solar panels
 - About 1 mm to rail extensions
 - About 6 mm to top/bottom solar panels
- Stayout zones have been identified for
 - aluminum spacers
 - Delrin blocks
 - Rail extensions top/bottom

Thermal details

- Provided CAD physical model for creation of thermal analytical model
- No meaningful opportunities for thermal to dictate materials, areas, or coatings of exterior
- Good bonding of side solar panels to structure
 - 6 screws and wide overlap of ground plane to aluminum
- Good bonding of PCBs with each other
 - Ground planes conduct to aluminum spacers
- Isolation of PCBs from structure
 - Conduction: Delrin with "long path" from PCBs to structure
 - Radiation: One-layer insulation on backside of +/-Z solar panels
- Assist documenting of thermal inputs and results

Antennas

- Whips from +/-Z faces (// spin axis)
- Possible torsion spring hinges
- Magnetic capture, or burn wire
- Possible breakwire stow status

Fox 2 Deployable Solar Panels

Prelim checks with Cal Poly

- Provided drawing of interpretation of envelope
 - Cal Poly agreed proper interpretation
 - Recommended backing away from envelope on faces toward other CubeSats. Built-in gap is only 0.5 mm.
 - "How much do you trust your neighbor?"
- Discussed sheetmetal plan
 - Not using 7075 or 6061 requires Waiver
 - Precedence for 5052-H32 (Pumpkin's CubeSat Kit)
 - Waiver approval likely
- Provided CAD model screen capture of bent walls
 - Further discussion on tolerances and Rail contact area
 - Some suggestions but current plan OK

Prelim checks with NASA

- Conversation about sheetmetal plan
 - Will not impose 7075 or 6061 requirement from CDS
 - Will impose NASA requirements for materials
 - Dissimilar metals
 - Stress corrosion cracking
 - Fracture control
 - Strengths used in analysis
 - Mr. Skrobot will ask materials group to comment on our compliance
 - I provided statement on 5052-H32 concerning each NASA requirements doc

Plans for 2012

- Early retirement of risk items
 - Sheetmetal bend tolerance
 - Stowed antenna within envelope
- Prototype as necessary
 - Bent sheetmetal walls
 - Delrin blocks for PCB Stack
 - Antenna stowage/deployment
- Complete design of Fox 1
- At least preliminary design of Fox 2 addition of deployable solar panels (to maximize commonality between Side Solar Panels between Fox 1 & 2)
- Build four Fox 1
 - but initially only two receive expensive solar cells