

ATMOSPHERIC & SPACE TECHNOLOGY RESEARCH ASSOCIATES

SCIENCE + TECHNOLOGY + APPLICATIONS // Bringing it all together

Scintillation Observations and Response of The Ionosphere to Electrodynamics (SORTIE)

13th Annual CubeSat Developer's Workshop San Luis Obispo, CA, US Wednesday, April 20th, 2016

M. Pilinski¹, E. Stromberg¹, C. Fish¹, G. Crowley¹, C. Huang², P. Roddy², L. Gentile²,
 R. Heelis³, R. Stoneback³, A. Vera⁴, C. Kief⁴, B. Zufelt⁴, J. Retterer⁵

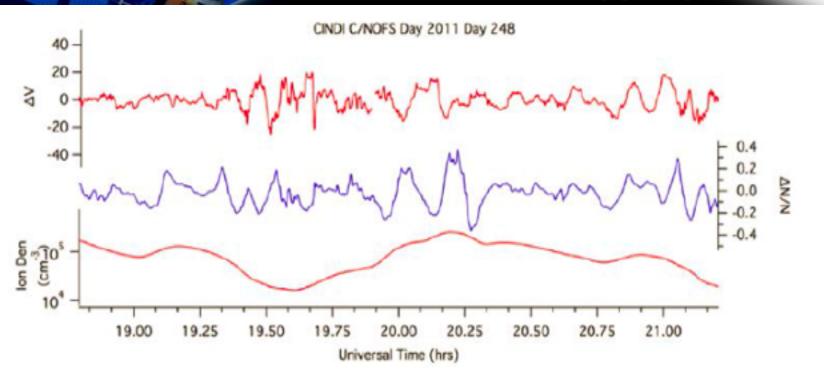
¹ASTRA LLC., ²AFRL, ³UTD, ⁴COSMIAC, ⁵Boston College

ASTRA • www.astraspace.net • 303-993-8039 • solutions@astraspace.net © 2015 Atmospheric & Space Technology Research Associates, LLC

SORTIE Mission Overview

Science
 Technology

- 6U CubeSat Mission
- Team Members:
 - NASA
 - ASTRA
 - AFRL
 - UTD
 - COSMIAC
 - Boston College
- Slated to launch late Fall 2017 (CSLI manifest)
 - Provide overlap with NASA's ICON mission
- CDR in May
- 1 Year of on-orbit lifetime
- Low to mid inclination orbit near 350-400km, circular



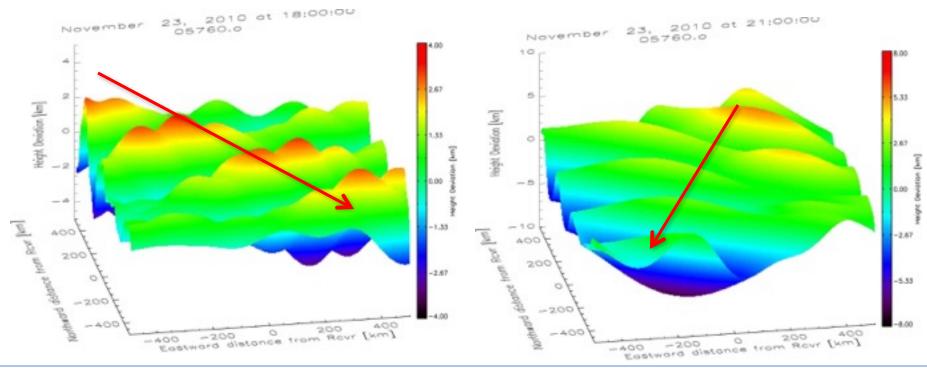
SORTIE Objectives

Science
 Technology
 Applications

ASTRA

Bringing It All Together

Q1) To discover the sources of wave-like plasma perturbations in the F-region ionosphere Q2) To determine the relative role of dynamo action and more direct mechanical forcing in the formation of wave-like plasma perturbations.


Science Closure

Science
 Technology
 Applications
 Bringing It All Together

Measure phase delay between the velocity components parallel and perpendicular to the magnetic field and the plasma density perturbation.

- High-cadence plasma densities
- Vector ion drift

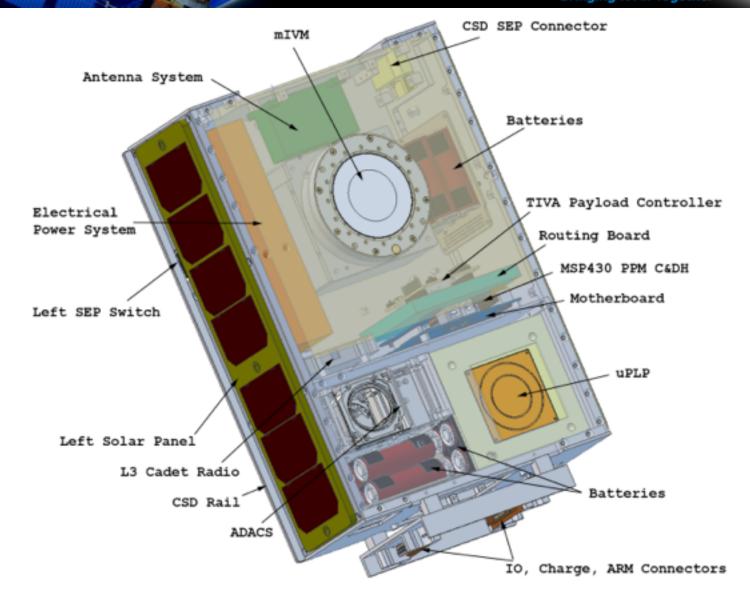
SORTIE vs. C/NOFS

Science

Technology
 Applications

Bringing It All Together SORTIE at 52° inclination C/NOFS orbit in 2009 SSCWeb 3D Sunday 7 December, 2014

- SORTIE will complement C/NOFS dataset by sampling from a different orbit
- SORTIE will provide new/continuing data now that C/NOFS has reentered
- The near-circular SORTIE orbit will provide more optimal ionospheric sampling
- SORTIE instruments: mini-IVM, micro-PLP
- C/NOFS instruments: IVM, PLP, NWM, CORISS, CERTO, VEFI
 3/1 SORTIE will complement the NASA ICON mission that will launch in 2017


System Overview

Science

Technology

Applications

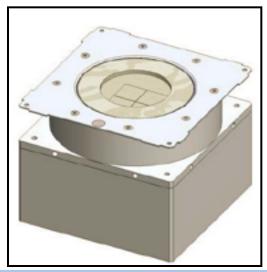
The Instruments

Science

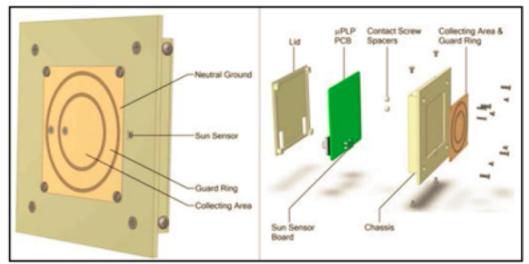
Technology

Applications

Bringing It All Together


cs-IVM specifications

Parameters	Estimated Value	Parameters	Estimated Value
Mass	<750g	Voltages Required	+5VDC
Dimensions	< 98 x 98 x 75mm	FOV	±45° from edge of sensor
	450mW (average) 500mW (peak)		+/- 0.05° (knowledge) +/- 10° (control) <0.125°/min (slew rate)

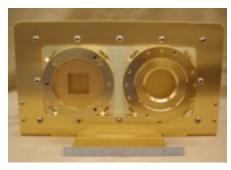

μ -PLP specifications

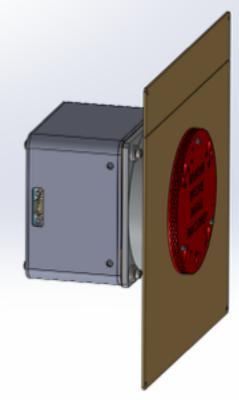
Parameters	Estimated Value	Parameters	Estimated Value
Mass	<300g	Voltages Required	+12VDC, +3.3VDC
Dimensions	< 90 x 85 x 25mm	FOV	±30° from edge of sensor
Power Consumption	200mW (average) 300mW (peak)	Pointing Reculting	+/- 5° (knowledge) +/- 10° (control)

cs-IVM

µ-PLP

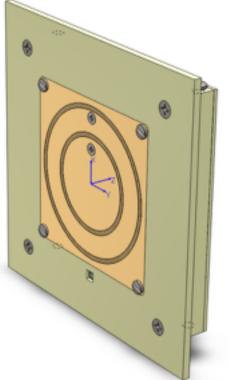
4/13/2016


CONFIDENTIAL


On-Board Instruments: Ion Velocity Meter (IVM)

Science
 Technology
 Applications

- Developed by UTD
- Suite of Ion Potential, Drift, and Velocity

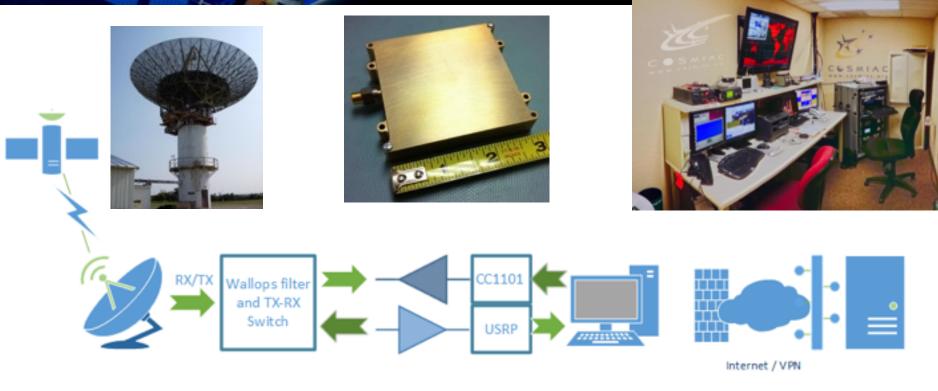


CINDI C/NOFS

Specification	Mission Requirement	Performance	Margin
Spatial Resolution	< 100 km	< 4 km	25x
Vertical Drift Range	+/- 500 m/s	+/- 1000 m/s	2x
Vertical Drift Resolution	1 m/s	0.5 m/s	2x
Accuracy/Noise	< 20 m/s (13m/s	7 m/s	1.85x

On-Board Instruments: µ Planar Langmuir Probe

- Science
 * Technology
 * Applications
 Bringing It All Together
- Developed by AFRL
- Planar Langmuir Probe
 - Simplified design over heritage instruments
- Measure Ionospheric plasma density fluctuations along the



arbital tradi			
Specification	Mission Requirement / Expected Performance		
Spatial Resolution	< 100 km		
Range	1x10 ² - 1x10 ⁷ cm ⁻³		
Resolution	10% or 100 cm ⁻³		
Accuracy/Noise	10% or 100 cm ⁻³		

Mission Operations Center and Ground Station

Science Technology Applications

ANTENNA (WFF)

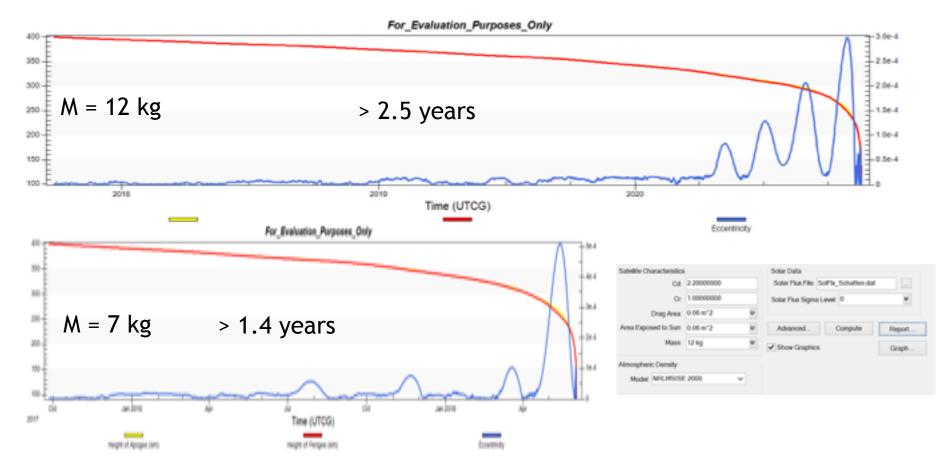
RADIO (WFF)

COSMIAC MISSION OPERATION CENTER

- Half-Duplex L-3 Cadet Radio
 - Downlink: 460-470 MHz band

 - 3 Mbps downlink Proven on DICE mission
 - 8.4 Gigabytes of DICE mission data downloaded (> 20 Terabytes of raw data, I&Q)

SORTIE Mission Lifetime / Orbit Decay Analysis


Science

Technology

* Applications

Mission	Altitude	Inclination	Alignment	Туре	Launch
Design Ref: Primary	400 km	51.65 °, 0 RAAN	Geodetic Z (J2000 Z)	ISS Orbit	Sept 2017

Questions

Science

Technology * Applications

Data Sharing

Science
 Technology
 Applications
 Bringing It All Together

- Data and results will be available via the ASTRA web-site (<u>www.astraspace.net</u>)
- This information will include a description of the physics being investigated, and the new scientific results obtained from the proposed research
- ASTRA freely distributes model results and data via ftp to the scientific community for further use in their research
- NASA also has data hosting facilities that could be used for data archiving and distribution. These include the CDAWeb and NSSDC, and these options will be investigated.

ASTRA: Overview

Science

Technology
 Applications

Modeling	Data Assimilation	Data Services	Ground-based Instrument Development	Space Systems
Physics- Based Modeling	High-latitude Electrodynamics	Space Based Data	GPS-based Space Weather Monitor	CubeSat Missions NSF: DICE & LAICE AF: DIME, SIPS & TSS
(TIMEGCM) Real-Time Specification	(TIMEGCM) Global Real-Time Ionosphere		E-fields and Magnetometers	NASA: SORTIE & MiRaTa
of Ionosphere/ Thermospher e	Thermospheric Neutral Density	Forensic Space Weather Analysis	Low Power Ionospheric Sounder	Plug-N-Play Avionics CubeSat Instruments Scanning UV Photometer
4/ <i>m</i>	Satellite Drag & Ballistic	Satellite Aerodynamics	HF TID Mapper	E-field Double Probe RF Waves & Sounder
	Coefficients		Lidar Systems	Wind Profiler GPS-based Space Weather Monitor
Celebrating our 10 th Anniversary				Magnetometer & Langmuir Probe Hosted Payloads

Science

ASTRA Mission Competencies

ASTRA Core Competencies for Satellite Missions

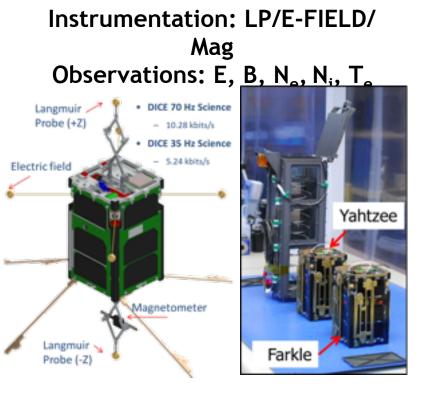
- Mission Development / Science
- Mission Design
- Mission Management
- Mission Systems Engineering
- Instrument Development
- Algorithm Development
- Data Analysis and Interpretation
- Product Development

ASTRA staff have more than 70 decades of combined space flight & space science heritage, and have developed, tested, and flown systems on more than 20 orbital and suborbital space missions.

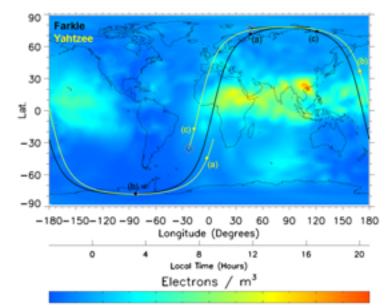
Selected CubeSat Missions

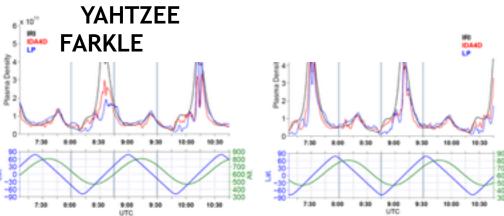
Science

Technology
 Applications


Mission	Launch	Instruments	Description	
DIME Double-probe Instrumentation for Measuring Electric-fields	Est. 2017 Status: Entering I&T phase	 Two Langmuir probes to measure in-situ ionospheric plasma densities. Science and attitude magnetometers Four electric field probes on 3.5-meter cable booms 	Currently being built for the Air Force. A CubeSat solution for monitoring electric fields in Low-Earth Orbit implementing lessons-learned from on-orbit experience with DICE. Form: 1.5 U	
SIPS Scanning Imaging Photometer Systems (UV Imager)	 Est. 2018 Status: UV Detector Built and tested, including mechanical/thermal Sensor flown on the SENSE mission Front End optics Scan mirror built, & tested: mechanical/thermal 	Combination: • UV Detector (photometer) • Scanning mirror Higher SNR than DMSP SSUSI instrument (clearer features) Viable SSUSI replacement (lower SWaP, and cost by 10x)	Low cost and versatile sensor for UV remote sensing of the ionosphere Capable of providing night-time images of the ionosphere enabling almost continuous monitoring of the night-side ionosphere. Resolves ionospheric structures at 1 vertical TEC unit (better than GPS TEC) Form: 6U	
Topside Sounder	Est. 2018 Status: Sensor completed – Q4FY15 demonstration for AF	 Large deployable HF antennas Miniaturized ultrasensitive receivers 	Low power FMCW HF Sounding instrument to make topside measurements of the ionosphere from a CubeSat platform. Form: 12U	

Electric Field Constellation Pathfinder: DICE


Science
 Technology
 Applications

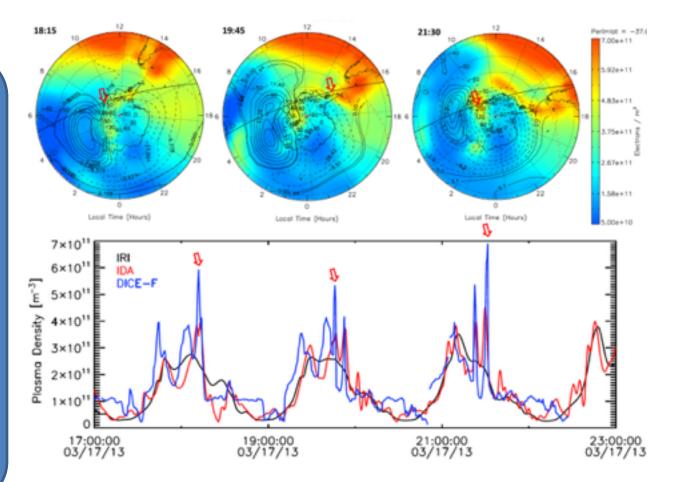

Bringing It All Together

Sensor SWaP		
Volume (U)	0.4	
Mass (g)	350	
Power (mWDC)	520	

1.00e+10 2.08e+11 4.07e+11 6.05e+11 8.03e+11 1.00e+12 1.20e+12

DICE: Data Analysis and Dissemination

Science
 Technology



Bringing It All Together

Applications

ASTRA: Measurement to information

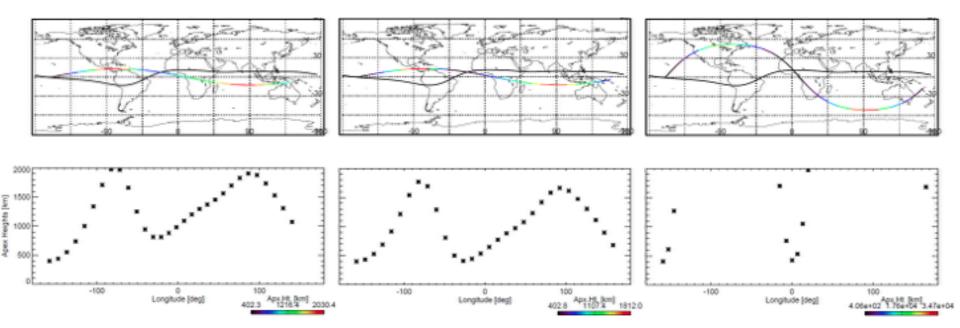
Assimilating data into models for operational products

Above: DICE plasma density observations compared with IDA4D assimilation of the south polar ionosphere. Note that the enhanced densities observed by DICE (red arrows in the bottom plot) correspond to when the DICE satellite passes through a tongue of ionization during successive passes (red arrows).

SORTIE at a Glance

Science
 Technology
 Applications
 Bringing It All Together

- Customer: NASA (HTIDES)
- Broader impact: scintillation
- Motivation: better understanding of the distribution of initial wave-like plasma perturbations and the conditions under which they can be related to intense plasma instabilities
- ASTRA is the PI institution (G. Crowley, C. Fish, M. Pilinski)
- Teaming with:
 - UT Dallas: providing mini Ion drift meter
 - Rod Heelis
 - Russel Stoneback
 - AFRL: providing micro planar Langmuir probe and GFE XaCT system
 - Cheryl Huang
 - Patrick Roddy
 - James Lyke
 - Louise Gentile
 - Boston College: modeling support
 - John Retterer
 - COSMIAC: bus integrator
 - Alonzo Vera
 - Craig Kief
- Mission Completed by October 2018 (launch in last quarter of 2017)


SORTIE vs. C/NOFS

Science
 Technology
 Applications
 Bringing It All Together

Apex height-longitude sampling

C/NOFS, 400x850km, *i*=13° SORTIE, 406x416km, *i*=13° SORTIE, 406x416km, *i*=52°

