CubeSat-Class Spinning Landers for Solar System Exploration Missions

Rex Ridenoure, CEO Ecliptic Enterprises Corporation Pasadena, CA

Spring CubeSat Workshop San Luis Obispo, CA 2014 Apr 25

Scalable Spinning Satellites

Size Comparison for GLXP Win

Notional Lander Concepts*

Mars

Asteroid

Commercial

* First presented at 2011 Low-Cost Planetary Missions Conference (APL/Laurel, MD)

Notional CubeSat-Class Lunar Mission

Objective

- Explore lunar polar craters

Mission architecture

- Multiple piggyback spinning landers on larger lander.
- Mobility (hopping) within ~1 km radius of main lander
- Various remote-sensing and in-situ science goals

Spinning lander attributes

- ~3.5U dual-spin CubeSats with legs
- Spun-despun interface based on MIT design
- Legs derived from stowed CubeSat rails
- Nominally battery-powered; solar optional
- TBD propulsion (various options)
- Wireless comm to/from main lander during all mission phases
- Variable science instrument complements
- Multiple webcam-like imagers

Main Lander and Stowed Spinning Landers

Spinning CubeSat-Class Lander

Spun-Despun Interface

See: Eric Peters, et al., MIT Space Systems Lab: *Design and Functional Validation of a Mechanism for Dual-Spinning CubeSats*, Paper SSC13-WK-08, CubeSat Workshop at Annual SmallSat Conf., Logan, UT, 2013 Aug 10

2014 Apr 25

Sample Prop Module

See: Chris Biddy and Tomas Svitek, Stellar Exploration, Inc.: *Monopropellant Micropropulsion System for CubeSats*, Paper SSC09-II-2, at Annual SmallSat Conf., Logan, UT, 2009 Aug

Maneuvering

Typical CONOPS

v. 2.0?

Rough Performance -- Hovering

Rough Performance -- Translation

Rough Performance -- Range

What's Next?

- Discuss and assess mission concepts
 - And notional science instruments, CONOPS, etc.
- Assess subsystem requirements
 - Esp. GN&C, ADCS, propulsion
- Assess technology readiness and gaps
 - Esp. propulsion, landing radar
- Assess integration issues
 - Spinning lander itself and with main lander.
- · Simulations, mission animations, concept art

Rex Ridenoure rridenoure@eclipticenterprises.com (626) 278-0435