

An Update on UCLA's Electron Losses and Fields Investigation

2014 CubeSat Developers Workshop

Electron Losses and Fields Investigation

- 3U Space Weather CubeSat, 4.0kg
- Exploring the mechanisms responsible for the loss of relativistic electrons from the radiation belts
- Spin Stabilized @ 20RPM
- University Nanosatellite Program
- Selected for CLSI #5
 - Ranked 3rd out of 16 for a 2015 – 2017 launch

Instruments:

- Energetic Particle Detector Electrons (EPD-E)
- Energetic Particle Detector Ions (EPD-I)
- Fluxgate Magnetometer (FGM) on 75cm stacer boom

- Orbital Requirements:
 - Inclination must exceed 65°
 - > 400 km perigee
 - < 2500 km apogee</p>

- 3 month minimum duration
 - Required time to have a high probability of seeing a geomagnetic storm

- Performance Characteristics:
 - Measure the magnitude of the Earth's magnetic field to a resolution of 0.1nT
 - Measure the full 50,000nT range of the Earth's magnetic field
 - Have an offset stability of less than 1nT per 10,000s

ELFIN ENERGETIC PARTICLE DETECTORS

Capabilities:

- Measure incident energies to a resolution of $\Delta E/E \le 50\%$
- Have ≥ 16 pitch angles per revolution, which translates to each sector lasting < 187ms at 20RPM
- Have a field of view < 28°

Each detector will measure a different energy range

- Ion side EPD (EPD-I): 50keV - 300keV ions (protons)
- Electron side EPD (EPD-E): 50keV - 4.5MeV electrons

Shielding

- 3mm of tantalum w/ 9mm aluminum ~750g
- Reject side penetrating particles
 - <1% of measured</p>
 - Coincidence logic reduces this to <0.01%

UCLA

20RPM Spinner

- Only a handful of spinners exist, most slower, few faster
- Some CubeSats are inadvertent spinners (or tumblers)
- Maintained with torquer coils

Payload Requirements

- Tight magnetic cleanliness requirements enforced by FGM
- Electrical cleanliness requirements enforced by EPD

Mission Longevity

- Science based on geomagnetic storms, which are infrequent
- Need a long mission life to guarantee science data
- Moderate instrument data volume (~4.5 MiB/day)
 - 4 downlinks/day (2 ground stations)
 - 19.2kbps on amateur bands

Electrical Power Subsystem

- Reduced power generation (2.4W AAOAP)
- Dynamic power over a revolution

Attitude Determination & Control Subsystem

- Little/no COTS; Spinning on purpose is rare & usually avoided
- High-efficiency torquer coils
- Nutation & damping modeling
- Sensor skewing

Communications

- No nadir tracking: omni-directionality is key
- Spin fading

- Antennas Stored in the Tuna Can
 - Based off CubeSat Rev-13 bonus volume
- Simplified Antenna Configuration
 - Extensive simulations have showed that there is an optimal, more omni-directional antenna configuration
- Settled on UTJ Solar Cells
 - Extensive trade study between UTJs and TASCs
 - EPS incompatibilities led us to select UTJs

- Externally mounted antennas
 - Used weak phosphor bronze springs
 - Risk of recontacting solar panels
 - Required cutting into the spacecraft for bend radius

ELFIN 2014 ANTENNA MOUNTING: TUNA CAN

- Moved antennas to new tuna can volume
- Clocked 45 degrees out of plane and 30 degrees out of body axis

ELFIN 2013 ANTENNA CONFIGURATION Total Field

2014 ANTENNA CONFIGURATION

UCLA

ELFIN

ELFIN UTJ VS TASC TRADE STUDY

The second secon

Advantages in using TASC

- More power BOL (better packing factor)
- Better theoretical magnetic cleanliness
- Dramatically cheaper compared to larger cells

Not quite suitable for our mission:

- Higher string voltage, incompatible with current EPS
- Higher current-matching burden (120 pairs vs 10 pairs)
- Very complicated wiring pattern required
- Short natural cell lifespan
 - Can be extended with aftermarket coverglass and encapsulent
- Selected: SpectroLab UTJs

Thank you to all of our sponsors, stakeholders, mentors, reviewers and contributors

THE AEROSPACE CORPORATION

UCLA

THE UNIVERSITY OF

Jet Propulsion Laboratory California Institute of Technology

David Hinkley @ The Aerospace Corporation Shaun Murphy @ Northrop Grumman Katharine Gamble @ UT Austin Jim White WDOE @ Colorado Satellite Services Mark Spencer WA8SME @ ARRL Tony Monteiro AA2TX & Bob Davis KF4KSS @ AMSAT-NA

UCLA

