RE-ENTSAT, AN ATMOSPHERIC TRIPLE UNIT RE-ENTRY CUBESAT

<u>G. Bailet</u>, J. Muylaert Aeronautics & Aerospace Dept., von Karman Institute for Fluid Dynamics

Context

-Scenario time line-

➤Introduction

Conceptual design

≻Challenges

Specific payloads

Introduction -www.qb50.eu-

-www.qb50.eu-

QB50:

First network of CubeSat

➢ 50 CubeSats sequentially deployed at an initial altitude of 320 km

Each CubeSat will perform in-situ measurements of atmospheric parameters

-www.qb50.eu-

QB50:

First network of CubeSat

➢ 50 CubeSats sequentially deployed at an initial altitude of 320 km

Each CubeSat will perform in-situ measurements of atmospheric parameters

Launch together in June 2015

Introduction

In addition of the main QB50 payload, the Re-entry CubeSat demonstrator will:

Be deployed at the same time with the other QB50 CubeSats

Introduction

In addition of the main QB50 payload, the Re-entry CubeSat demonstrator will:

- Be deployed at the same time with the other QB50 CubeSats
- Based on the three unit CubeSat standard 100x100x340 mm

9th annual CubeSat Developers' workshop - San Luis Obispo, April 18-20 -

340 mm

100 mm

100 mm

Introduction

In addition of the main QB50 payload, the Re-entry CubeSat demonstrator will:

- Be deployed at the same time with the other QB50 CubeSats
- Based on the three unit CubeSat standard 100x100x300 mm
- Provide Re-entry flight data until the max heating point (>50 km)
- No debris should reach the ground
 (DRAMA code: Debris Risk Assessment and Mitigation Analysis)

Scientific opportunities for low-cost re-entry platforms

-Affordable platform for research oriented re-entry technology-

- Field of expertise at VKI in experiments and simulations: YES2, Expert, IXV
- Flight experiments for validation of numerical simulations and ground tests
- Characterization of TPS materials in flight conditions
- Re-entry Challenges & Solutions:
 - Deorbiting and trajectory
 - Stability and trimming
 - Max heating
 - Communication blackout
 - Debris mitigation and disintegration

Conceptual design

-Result for the proposed geometry with uncertainty analysis-

Conceptual design

-Result for the proposed geometry with uncertainty analysis-

Entity	Energy needed (in Whr, including 30% margin)	
Functional unit (OBC, EPS)	2	
Payload + amplifier	2	
Telecommunication system (Antenna + Iridium transceiver)	6	
Total	10	
2 batteries needed to survive complete min mission (including the margin	e the 10 ns)	
	CubeSat Battery Board for 3U EPS (ISIS) For one battery: 8.2V and 10Whr	and the second second
9 th annual Co - San L	ubeSat Developers' workshop uis Obispo, April 18-20 -	

VON KARMAN INSTITUTE

Conceptual design

-Result for the proposed geometry with uncertainty analysis-

Subsystem	Mass (in g)	Margin	Mass with margin (in g)	
Heat shield	317	20%	380	
Functional unit +Structure +telecommunication system	1008	24%	1248	
Deorbiting and stability system	500	20	600	
Functional unit	1825	22%	2228	
Pavload	_	_	772	

An artistic impression (left) and the tree critical parameters(right; 1: nose radius= 230 mm, 2: edge radius= 12 mm , 3: inclined surface (α=0))

Challenges -TPS sizing-

Challenges

-TPS sizing-

Quantify the impact of the deorbiting system on the whole trajectory within the mission constrains.

Quantify the impact of the deorbiting system on the whole trajectory within the mission constrains.

- Limit the heat load within heat flux constrains (our case)
- Collect data from a specific phenomenon or range of altitude
- Any specific mission (where you can associate an efficiency coefficient)

Challenges

-Deorbiting system-

-Thermal management-

-Thermal management-

After a review of the possible side panels configurations, the final configuration is proposed as following:

- Standard Aluminium panel (thickness of 1.5 mm)
- + 1.6 mm of thermal blankets made out of 3M Nextel 312

3M Nextel 312 thermal blanket sample

Challenges

-Telecommunication system-

Maximum of 10 minutes for the Re-entry and the vehicle will not survive:

Needs to transmit the data before disintegration

Utilization of the Iridium constellation:

 Permanent coverage of all the trajectory
 (by 4-6 satellites with 10 Mo/s link for each)

Specific payloads

-minimal configuration-

Minimal payload

20 thermocouples15 pressure probes (static or total)

4 strain gages

Power supply needed: 2 W (with margins)
Data rate: 1 kbytes/s (with margins)

+ Extra data rate to be evaluated for the extra payload

9th annual CubeSat Developers' workshop - San Luis Obispo, April 18-20 -

Cable

Specific payloads

-Ablation characterization: example of a recession sensor-

Specific payload

-Emission spectroscopy-

Thank you for your attention

-gilles.bailet@vki.ac.be-

Stability system

-How can a brick fly?-

	Low drag increment (hemisphere)	High drag increment (flat plate)
Surface area (in cm ²)	42.25	100
Position downstream the vehicle (in m)	1.3	0.32
Drag coefficient increment	0.38	2

Future work: PASDA code (Parachute System Design and Analysis Tool)

Structural consideration

-CATIA FEM module-

