

Escuela de Ingeniería iU.S.A. tu INGENIO!

Simulation of CubeSat energy systems

UNIVERSIDAD

SERGIO ARBOLEDA

Donde tú 🤇 L cuentas.

for evaluation of power interfaces

Jesus Gonzalez-Llorente

Ronald Hurtado

Freddy Diaz

9th Spring CubeSat Developer's Workshop California Polytechnic State University April 18 – 20 2012

Escuela de Ingeniería iU.S.A. ta INGENIO!

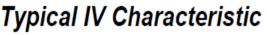
Contents

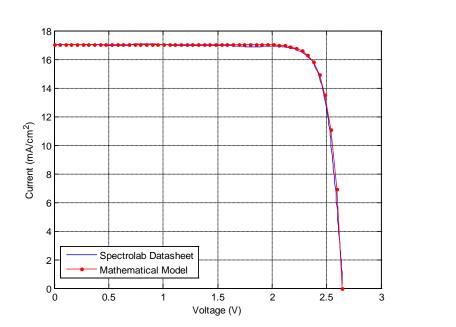
- CubeSat Electrical Power System
- Modeling EPS components
 - Model of Photovoltaic cell
 - Model of battery
- Comparing DET and MPPT
- Conclusions
- References

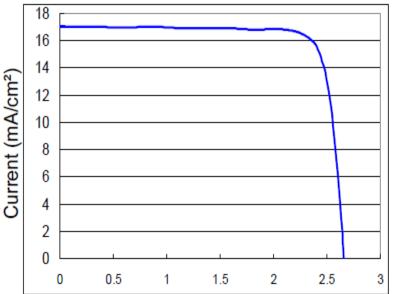
Escuela de Ingeniería iU.S.A. tu WGENIO!

CubeSat Electrical Power System (EPS)

- The Electrical Power System (EPS) is a critical subsystem for all CubeSats
- The EPS must satisfy the specific requirements for each CubeSat
- Either a custom or a commercial EPS must provide reliable and safe power to the CubeSat
- it is important to evaluate the behavior of the EPS for the analysis and the design, considering the power sources


Escuela de Ingeniería iU.S.A. ta INGENIO!

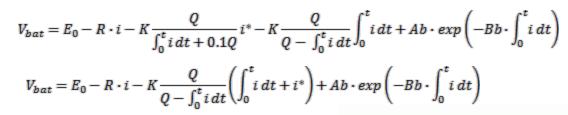

Modeling EPS component

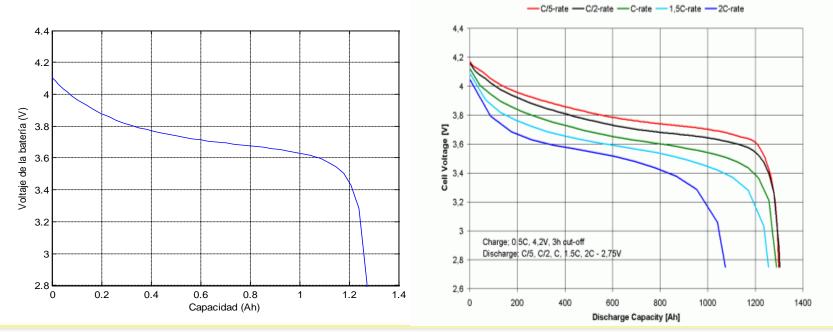

• Photovoltaic cell model (Ortiz-Rivera)

 $I = \frac{I_x}{1 - \exp\left(-\frac{1}{b}\right)} \left[1 - \exp\left(\frac{V}{bV_x} - \frac{1}{b}\right)\right]$

AM0 (135.3 mW/cm²) 28°C, Bare Cell

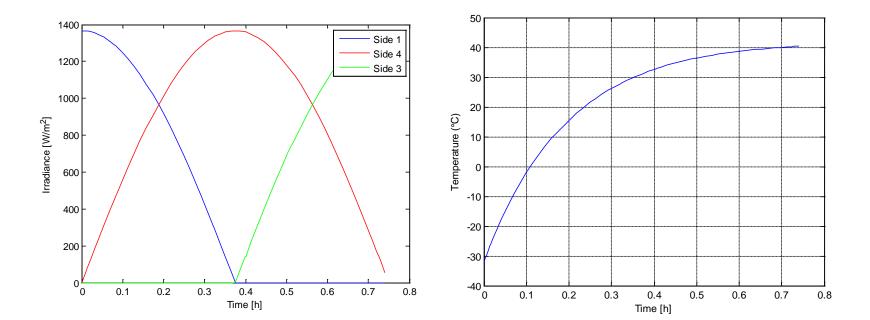
Voltage (V)



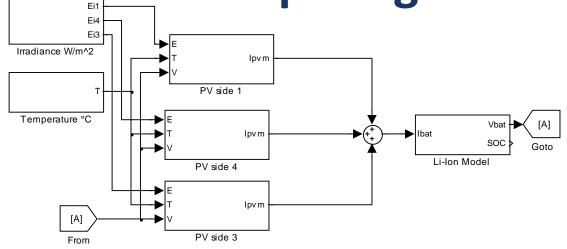

Escuela de Ingeniería

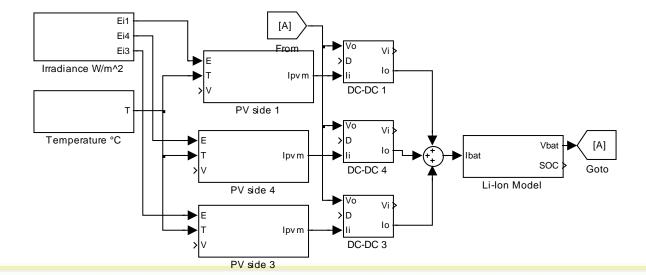
Modeling EPS component

• Battery model (Tremblay)

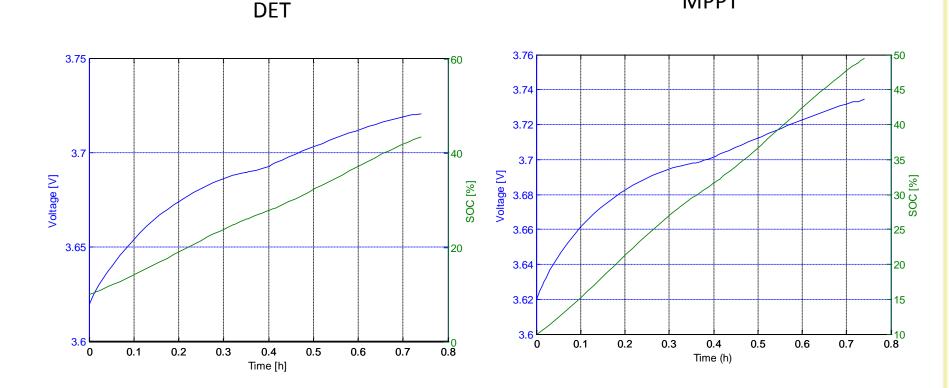

Escuela de Ingeniería iU.S.A. tu WGENIO!

Orbit environment


Irradiance


Temperature (Erb,2011)

Comparing DET and MPPT



Escuela de Ingeniería iU.S.A. ta WGENIO!

MPPT

Results of Comparison

Conclusions

Escuela de Ingeniería

iU.S.A. tu INGENIO!

UNIVERSIDAD

Donde tú <1, cuentas

SERGIO ARBOI

- Behavioral models for photovoltaic cell and Li-Ion batteries were described and used for CubeSat power system simulation
- In DET photovoltaic cells does not operate at maximum power point, the voltage is determined by the battery
- Using power converter the photovoltaic cells operate at maximum power point, thus the battery reaches a greater state of charge (7%).
- Future work must consider efficiency of power converter, as well as, a trade off between complexity and energy increment.

Escuela de Ingeniería

References

- Eduardo Ortiz-Rivera, "Modeling and Analysis of Solar Distributed Generation," East Lansing, MI, USA., 2006
- Oliver Tremblay and Louis-A Dessain, "Experimental Validation of a Battery Dynamic Model for EV Applications," vol. 3, 2009
- Craig Clark. CubeSat Solar Panels. http://www.clydespace.com/documents/2625
- SpectroLab 28.3% UTJ Solar cells. http://www.spectrolab.com/DataSheets/cells/PV%20UTJ%20Cell%205-20-10.pdf
- Danionics. Lithium Ion Polymer Rechargeable Battery. [Online]. http://www.danionics.dk/graphics/PDFs/Solution_and_technology/Batteri es/1_pg_product_specification/DLP413599G3_1pg_product_specification. PDF
- Daniel Erb, "Evaluating the effectiveness of peak power tracking technologies for solar array on small spacecraft," Lexington, KY, 2011

Simulation of CubeSat energy systems for evaluation of power interfaces

Escuela de Ingeniería

iU.S.A. tu INGENIO!

UNIVERSIDAD

Donde tú <1. cuentas

SERGIO ARB

Question?, Suggestions! Jesús González Llorente

jesusd.gonzalez@correo.usa.edu.co http://ingenierias.usergioarboleda.edu.co/