

SWIFT/

SDR

Software Defined Radio (SDR) Based Communication Downlinks for CubeSats

Nestor Voronka, Tyrel Newton, Alan Chandler, Peter Gagnon

Tethers Unlimited, Inc.

11711 N. Creek Pkwy S., Suite D113 Bothell, WA 98011 425-486-0100x678 voronka@tethers.com

History and Motivation

- Tethered CubeSats
 - Relative position important for tether dynamics knowledge and active control
- Fractionated Spacecraft (e.g. DARPA F6 clusters)
 - Collision avoidance
 - Relative position knowledge for orbit maintenance
 - Aid in pointing higher gain apertures
- Distributed Sensing systems
 - Relative position knowledge for orbit maintenance
 - Timing for synchronized sampling
 - Knowledge of sensor baselines and orientations

anced Propulsion, Power, & Comm for Space, Sea, & Air_____

SWIFT-RelNav Enables Cluster Operations

- Spacecraft subsystem that will enable a 'flock' of satellites to operate as a coordinated cluster
 - Relative Position and Orientation for Formation Flight
 - Provide reference data for cluster-based sensors
 - Inter-satellite communication
 - Data exchange for cluster-based sensors
 - Cluster Timing Synchronization
 - Essential for coordinated operations and coherent measurements

	Kinematic GPS w/ UHF link	TUI's "Raw" SWIFT-RelNav
Relative Ranging Precision (1- σ)	0.1 m	<0.1 m
Relative Velocity Precision (1- σ)	10 mm/sec	5 mm/sec
Relative Attitude Precision (1- σ)	N/A	1 °
Relative Timing Precision (1-σ)	1 nsec	0.3 nsec
Comm Data Rate(BER≤10 ⁻⁶)	0.0192 Mbps	>10 Mbps
Range of Operations	< 10km	<10 km

SWIFT- RelNav provides improved relative navigation, timing, and inter-sat comm over GPS-based methods to enable precision cluster flight and coherent sensing.

TETHERS

Advanced Propulsion, Power, & Comm for Space, Sea, & Air

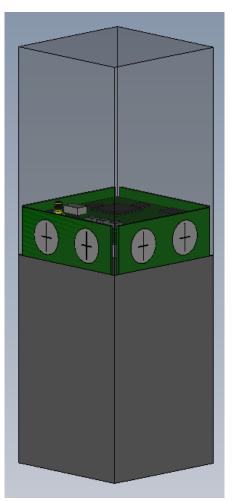
SWIFT-RelNav System Overview

• Objective

- Provide cluster navigation, communication, and timing
- Performance Targets
 - RF-Based Relative Range & Heading sensor
 - < 0.1m range precision (1- σ)
 - TOF with PRN sub-sampling for range
 - $< 1^{\circ}$ attitude precision (1- σ)
 - Pseudo-Doppler Direction Finding for heading
 - Crosslink data rate > 12 Mbps (BER < 10-6)
 - Timing synchronized to < 20 ns (1- σ)
 - No sensor pointing required
 - No external references (i.e. GPS) required
 - Scalable to a large number of spacecraft
 - Specified performance up to 10km operating range

FTHFR

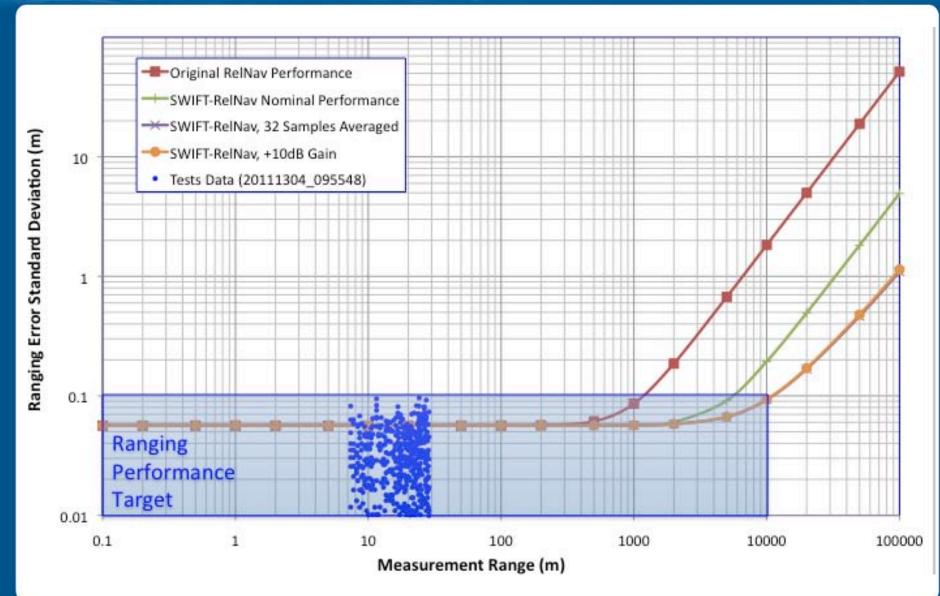
Advanced Propulsion, Power, & Comm. for Space, Sea, & Ai<u>r</u>


SWIFT-RelNav for CubeSat

Advanced Propulsion, Power, & Comm. for Space, Sea, & Air

CubeSat SWIFT-RelNav Configuration

- Single 8-element RHCP antenna array
- Integrated precision oscillator and ability to interface to higher precision onboard clock/timing (e.g. GPS 1PPS)
- For a 3 element Cluster with 1Hz update rate on range and attitude, with data communications 50% of remaining time
 - Data Rate ≈ 6 Mbps
 - Size: 82 x 82 x 25 (H) mm
 - Mass: < 0.4 kg</p>
 - Power: 4W average,7W peak



Estimated SWIFT-RelNav Ranging Performance

TETHERS

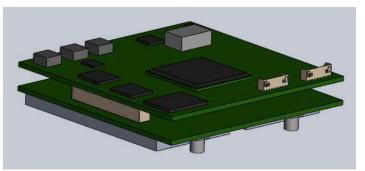
UNLIMITED

SWIFT-AFSCN Radio

- AFSCN provides command, tracking, and telemetry support to assigned satellite mission (ICD-000502)
- SWIFT-AFSCN provides a programmable SGLS/USB radio to communicate with AFSCN ground stations
- SWIFT SDR architecture provides software control to key radio parameters
 - Uplink & downlink frequencies (channels)
 - Waveform and modulation parameters
 - Feature set control (e.g. enable/disable command tone downlink, transmit sweep on/off)
- Planning on implementing all (non-deprecated) modulations described in ICD
- Separated 'command' and 'data' interfaces to SWIFT-AFSCN radio to simplify interfacing

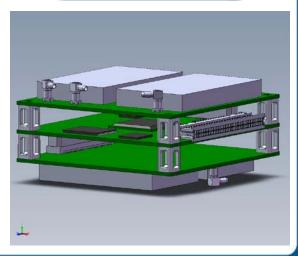
SWIFT-AFSCN Specifications

- SGLS: 1760-1840 MHz carrier range
- USB: 2025-2100 MHz carrier range
- Simultaneous reception on both bands possible
- Transmitter
 - S-band: 2200-2300 MHz, > 30 MHz BW, min 30dBm output
- Integrated AES-256 encryption
- Coherent turn-around ranging
- Estimated SWaP
 - Size: 82 x 82 x 25 (H) mm
 - Mass: < 0.4 kg
 - Power: 1.8 W receive


6.6 W peak transmit

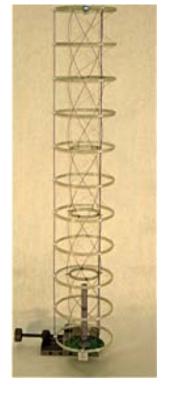
FTHERS

IMITED


Advanced Propulsion, Power, & Comm. for Space, Sea, & Air

AFSCN-TacSatComm

- Advanced Propulsion, Power, & Comm. for Space, Sea, & Air
- Started development of a communications <u>system</u> that would enable a nanosatellite to transmit/receive with an unmodified, standard Army issue handheld radio – UHF frequencies (goal of up to 56 kbps)
 - > 4 W transmit power, with EIRP > 10 W
 - A S-band link is also desired
 - Integrated encryption and FEC
 - SWaP
 - Size: 0.5-1 U
 - Power: < 14.7 Watts
- Radio thermal design is crucial



SWIFT-TacSatComm Antenna

Advanced Propulsion, Power, & Comm. for Space, Sea, & Air

- This a *system* antenna really matters
- Plan is to use a deployable rangecompensating quadrifilar helical (QFH) spacecraft antenna
 - Gain pattern eliminates/reduces path loss effects when antenna nadir pointed
 - Reduces ACS requirements
 - Circular polarization pattern is good
 - Does not require ground plane
 - Nearby objects have little effect on antenna
- UHF antenna ≈ 1 meter high
 - Requires deployment

SWIFT-SDR Architecture

- Architecture is comprised of hardware, firmware, and software elements
- Common modular interface to radio front ends allow system to have frequency band flexibility
- Common software interface enables rapid development and implementation of alternate channelization, configuration, modulation/demodulation, operations schemes
- Flexible user interfaces enhance testing as well as reduce integration challenges

SDR and Comm System Development Lessons

- When building hardware, design with margin
 - The art of design comes in determining how much is enough, and not too much
- Higher integration does not always produce a better system
 - However, you must accept the cost of modularity
- SDR radio development cycles are really software development cycles: good software engineering practices are crucial
 - Software needs to be developed at all levels: firmware, device drivers, and user applications
 - Develop a library of test cases that you use throughout the development, test and deployment cycle
 - Don't forget off-nominal states!
- Start with real signals as soon as possible
 - COTS SDR Platforms (e.g. USRP) are readily available and affordable
- Strive to improve performance through software first: greater flexibility, faster and usually less expensive
 - However don't discount hardware problems either

