Space Environmental NanoSat Experiment (SENSE)

Jacop Mat

BICE & MISSILE SYSTEMS CENTR

AIR FORCE S

Capt Paul La Tour SENSE PM

- Objectives, Organizations, and CONOPS
- Spacecraft Bus
- CTECS (Compact Total Electron Content Sensor)
- WINCS (Wind Ion Neutrals Composition Suite)
- CTIP (Compact Tiny Ionospheric Photometer)
- Interesting Mission Features

Space Environmental NanoSat Experiment (SENSE)

- SENSE is SMC's premier rapid development effort which will demonstrate the capability of NanoSats to perform space missions in an affordable and resilient manner.
 - 15 Months ATP to SV delivery (July 2012), 27 Months ATP to launch (July 2013)
- The first AF NanoSat mission, designed to prove the OSS&E of the NanoSat class space vehicle for the war fighter
 - Pathfinder to determine if NanoSats are suitable as potential SSAEM follow-on
 - Delivers three first generation miniature sensors; WINCS, CTIP, GPS-RO.
- A "lights-out" ground architecture with leave-behind capability to fly the next minimallymanned satellite mission.

Compact Total Electron Density Sensor (CTECS)

Photos of actual Flight Hardware

1 Mb/s S-Band Radio, Diplexer and Encryption Module

Cubesat Tiny Ionospheric Photometer (CTIP)

Schedule

A MASSILE SISTEMS CON	FY10	FY11	FY12	FY13	
<u>Key Milestones</u>	1234	1 2 3 4 Award IDR DR	1 2 3 4 TRR PSR	1 2 3 4 Launch Final	
Space Segment (XR) RFP Development Source Selection Sensor Development Bus Assembly & Test On Orbit Support Ground Segment (SDTW) Antenna Acquisition	Critical Path– Flight Software Ground	d Study	Multi Facto	-Segment Critical Path- ry Compatibility Test	
Develop Ground Infrastructure IA Certification OPS Support	Critical Path– CGA Software		Commo	on Ground Architecture Interface with AFRL	
Launch Segment (SDTW) Launch Coordination Launch Integration Data Analysis Segment (AFRI)				Launch Integration ORS Enabler	
Technical Support Hardware/Software Prep Data Analysis & Validation	Critical Path– Pre-Processing Software				
This is <i>Rapid!</i>		i ← 15 Mo	nths ───≻ i		
	\$1.700M	\$6.137M	\$1.782M	\$.899M ⁵	

Ground Segment

BACKGROUND:

- Current satellite C2 systems utilize 24/7 ground monitoring; SENSE striving for "lights out" capability
- Kirtland RSC Operations Center developing capability to connect to distributed sites from single terminal
- FY 2013-14 SENSE demonstration period with option to extend ops 1-year

Contribution to Greater Capability:

- •Demonstrate a distributed architecture to support small satellite missions including "lights-out" (unmanned) operations
- Established conductivity between Air Force mission operation center, Navy communications, and joint service command network
- Define architecture for pre-processing of data and automatic distribution
- Develop ground architecture with "leave behind" capability for future CubeSat programs
 - Operations Center improvements enabling flexible, distributed architectures
 - Platform for operator training

Future Improvements:

- Automated satellite command and control
- CubeSats offer potential for inexpensive distributed data collection through greater automation
- Increase contact frequency of CubeSats on operational networks proves operational theories
- Drive development of side-by-side operations with larger satellites on same contact network
- Peacetime means of maintaining operator proficiency

G

Υ

R

N/A

SEM Matrix

	03.						_	
	Space							
		DMSP	C	NOFS	SENSE	SENSE +	Ι	DMSP,
	Measurement	Polar Orbit	Equ	uatorial	Instruments	Ground		C/NOFS,
		Fixed LT	Orbi	it All LT	All LT	Processing		SENSE
	Auroral Particles	G	1	N/A	N / A	N/A		G
	Auroral Energy Deposition	G	I	N/A	N / A	N / A		G
	Auroral Imagery	G	I	N/A	N / A	N/A		G
	Auroral Boundary	G	I	N/A	N / A	N/A		G
	Energetic lons	Y-L	I	N/A	N / A	N/A		Y
	Medium Energy Particles	G	1	N/A	N / A	N/A		G
	High-Lat lonospheric Scintillation	Y - A	1	N/A	N / A	N/A		G
	Low-Lat lonospheric Scintillation	Y - OA		G	Y-0	G		G
	High-Lat In Situ Electric Field	G	I	N/A	N / A	N/A		G
	Low-Lat In Situ Electric Field	Y - O		G	Y - OT	G		G
	High-Lat Electron Density Profile	Y - A	1	N/A	N / A	N/A		Y
	Mid-Lat Electron Density Profile	Y - OA	1	N/A	G	G		G
	Low-Lat Electron Density Profile	Y - OA		G	Y-0	G		G
	Neutral Density Profile	R	Y	′ - AT	Y - AT	G		G
	In Situ Neutral Winds	R	Y	′ - AT	Y - AT	Y		Y
	High-Lat Geomagnetic Field	G	I	N/A	N / A	N/A		G
	Low-Lat Geomagnetic Field	Y - O		G	R	R		G
	In Situ Plasma Temperature	G		G	Y - T	Y		G
	In Situ Plasma Fluctuations	G		G	R	R		G
Goo	od measure of parameter			Sub-opti	mal orbital incli	nation		
Mea	easurement made, but with limitation(s)			Orbit altitude				
No r	o measurements made to address this parameter			Technology - instrument has limited or unproven capability for this param				
Doe	oes not apply in specified orbit			Instrume	nt covers a limi	ited range of the p	ar	ameter

SENSE Bus

- Very capable and low cost bus, considered infeasible only 4 years ago
 - Three axis stabilized; four reaction wheels
 - Two star cameras and GPS
 - Dosimeter included into Bus design
- 1 Mb/s Downlink & 4 kb/s Uplink S-Band Encrypted transceiver
- 35 watts generated orthogonal to sun ٠
 - 9.5-10.5 watts average on orbit power (orbit dependent)

Space Vehicle Mass (Worst Case SV #2)

Positive Energy Balance

SV has the ability to transmit 15 min/orbitEnables latency requirements satisfaction for SEM mission

TH FORCE SPAN

CTECS- Radio Occultation Sensor

CTECS is a GPS occultation sensor

Primary data product: line-of-sight TEC to all GPS satellites in view for ingest into ionospheric models

Secondary data product: L-band scintillation observations

- Antenna is dual patch
 - 1557 MHz and 1227 MHz
 - A Low-Noise-Amplifier (LNA) is placed between antenna and receiver
- L1, L2, L2c signal tracking capability

Measures:

- 1. Delay of signal between SENSE and the GPS transmitter to extract Total Electron Count in the atmosphere
- 2. Atmospheric Scintillation

AutoCad drawing of CTECS custom dual patch antenna embedded in the MTV satellite panel.

RUSDACE

NovAtel OEMV-2 receiver

Objective: Gather data to characterize the ionosphere through the natural decay rate as seen in recombination of O⁺ ions and electrons

Ionospheric Photometer (CTIP)

- Atomic Oxygen ions constitute the primary ionospheric species in the F-region
- In the night-time F-region ionosphere
 - 135.6 nm photons are emitted spontaneously
 - from the recombination of atomic oxygen ions
 - − $O^+ + e^- \rightarrow O (5P) + hv_{135.6}$

Compact Tiny

 O⁺ and e⁻ are in equal number and 135.6 nm emission is proportional to the path integral of [O⁺] squared

Measures:

1. Ultraviolet Airglow at 135.6 nm

Wind Ion Neutral Composite Suite (WINCS)

Objective: Acquire simultaneous co-located, in-situ measurements of atmospheric density, composition, temperature and winds.

WINCS Theory of Operation

- WTS/IDTS: Ionize incident air stream to measure the angular distribution at many angles simultaneously while scanning energy in time
- IMS/NMS: Time of Flight mass spectroscopy

Teledyne Micro-Dosimeter

Objective: Provide radiation dosage for measurement and to correlate system performance with exposure

- First compact microcircuit that provides a repeatable measurement of radiation dose and dose rate over a wide range of energies
- Enables routine monitoring of spacecraft radiation environment
- Custom microchip in a small footprint package for low weight and power
- Correlates environmental models and raytracing analyses with real in-flight measurements

Teledyne Microdosimeter

- 14 uRad Dose resolution
- Survivability to 40 kRad
- Class K space qualified
- Mechanical dimensions: 3.6 cm x 2.5 cm x 0.1 cm
- 20 grams
- 10 mA , 13 Vdc to 40 Vdc
- 3 DC linear outputs
- 1 Pseudo Log
- 100 kRad total count
- Test Input bypasses silicon detector for circuitry detection
- Volatile count retention
- Updates every 30 seconds

Mission Data Products (TPMs)

Environmental Data		Requir	rements	Current Value at DR				
Record (EDR)	rd (EDR) Parameter Threshold		Objective	CTECS	WINCS	CTIP	SENSE	
Electron density profile	Horizontal cell size	50 km	10 km	Variable	8 km	15 km	8 km	
Electron density profile	Vert Cell Size	10 km	3 km	6 km	N/A	10 km	2 km	
Electron density profile	Vert coverage	90 km to Sat Alt	90 km to 1600 km	90 km to Sat Alt	N/A	90 km to Sat Alt	90 km to Sat Alt	
Electron density profile	Range Ne	2.5E4 to 1E7 e/cm ³	1E4 to 1E7 e/cm ³	2E4 to 1E7 e/cm ³	1E3 – 1E7/cm ³	2E4 to 1.4E8	1E4 to 1E7 e/cm ³	
Electron density profile	Range VTEC	3 to 200 TECU	1 to 200 TECU	3 to 200 TECU	N/A	3 to 19000 TECU	1 to 19000 TECU	
		Greater of 1E5	Greater of 1E4 /cm ³					
Electron density profile	Sigma Ne	/cm ³ or 30%	or 5%	Variable ¹	10%	± 9%	< 20%	
		Greater of 3 TECU	Greater of 1 TECU	Greater of 3 TECU			Greater of 1 TECU	
Electron density profile	Sigma TEC	or 30%	or 30%	or 35%	N/A	3 TECU	or 20%	
Electron density profile	Sigma H _m F ₂	20 km	5 km	20 km	N/A	N/A	10 km	
Electron density profile	Sigma N _m F ₂	20%	10%	30%	N/A	N/A	15%	
Electron density profile	Sigma N _m E	20%	5%	100%	N/A	N/A	20%	
Electron density profile	Latency	90 minutes	15 mintues	15 mintues	N/A	15 minutes	15 mintues	
Scintillation	Horizontal Cell Size	100 km	25 km	500-2000 km	N/A	N/A	15 km	
Scintillation	Amp. index (S4)	0.1 to 0.5	0.1 to 1.5	0.1 to 1.5	N/A	N/A	0.1 to 1.5	
Scintillation	Phase Index (σ_{ϕ})	0.1 to 20 rad	0.1 to 20 rad	0.1 to 20 rad	N/A	N/A	0.1 to 20 rad	
Scintillation	Uncertainty S4	0.1	0.1	0.1	N/A	N/A	0.1	
Scintillation	Uncertainty σ_{ϕ}	0.1 rad	0.1 rad	0.1 rad	N/A	N/A	0.1 rad	
Scintillation	Latency	90 minutes	15 mintues	15 mintues	N/A	N/A	15 mintues	
lons	lon species	none	O_2^+ , NO^+ , O^+ , H^+ , He^+	N/A	O_2^+ , NO^+ , O^+ , H^+ , He^+	N/A	O_2^+ , NO^+ , O^+ , H^+ , He^+	
	Composition							
lons	discrimination	none	5% of Ne	N/A	5 % of Ne	N/A	5% of Ne	
lons	Drift velocity	none	Objective	N/A	+/- 2000 m/s	N/A	+/- 2000 m/s	
lons	Density	none	Objective	N/A	1E3 – 1E7/cm ³	N/A	1E3 – 1E7/cm ³	
lons	Density fluctuations	none	Objective	N/A	1E3 – 1E7/cm ³	N/A	1E3 – 1E7/cm ³	
lons	Energy	none	Objective	N/A	0 to 20 ev	N/A	0 to 20 ev	
lons	Temperature	none	Objective	N/A	1000 K to 4000 K	N/A	1000 K to 4000 K	
Electric Field	Electric field	none	Objective	N/A	0 to 150 mV/m	N/A	0 to 150 mV/m	
Neutrals	Wind speed	none	Objective	N/A	+/- 2000 m/s	N/A	+/- 2000 m/s	
Neutrals	Density	none	Objective	N/A	1E3 to 1E10 /cm ³	N/A	1E3 to 1E10 /cm ³	
Neutrals	Temperature	none	Objective	N/A	1000 K to 4000 K	N/A	1000 K to 4000 K	
1. 100% Elayer, 50% Flayer bottom side, 30% Flayer near peak, 15% topside								

Reliability Modeling (CTIP)

- CTIP vehicle reliability is estimated to be 0.7312 at 1 year.
 - 5 Bus Drivers are:
 - USB Radio (0.950)
 - IRB (0.954)
 - PMAD (0.969)
 - RWA controller (0.975)
 - +Y Body panel (0.980)
 - Payload Driver
 - CTIP (0.960)

- SENSE is a rapid development effort seeking to demonstrate affordable access to space for future operational CubeSat missions across SMC
 - Develop best practices for operational CubeSat/NanoSat procurement, development, test, and operations
- The first CubeSat mission to develop a flexible, distributed ground architecture supporting small satellite missions
 - Two one-month ops phases consisting of 24/7 operations using commercial and distributed joint service command antennae network for <90 minute data latency
- Mature CubeSat Bus and Sensor component TRLs
 - CubeSats drives down future costs for inexpensive distributed data collection systems through a common CubeSat Bus (\$300K per bus)
 - The common Bus becomes a platform for both operational use and future sensor development efforts
 - Three first generation miniature sensors; WINCS, CTIP, GPS-RO
- Mission data will improve current and future space weather models and demonstrate CubeSats' utility for operational weather requirements