

Highly Integrated Design Approach For High Performance CubeSats

Scott MacGillivray, President Tyvak Nano-Satellite Systems LLC (714) 392-9095 | scott@tyvak.com

August 7th, 2011

Tyvak™ Company Background and Overview

- Tyvak[™] was Created to Address Unfulfilled and Growing CubeSat Needs
 - Feedback From Customers Concerned that Needed Performance and Complete Solutions Were Not Supported by Existing Component & Kit Focused Suppliers
 - Advanced "Next Generation" CubeSat Components & Complete Vehicles To Support Operational and Scientifically Relevant Missions
 - Provide Complete Program Life-Cycle Expertise and Mission Development
- The Tyvak™ Team Brings Experience and Unique Skills in CubeSats
 - Co-Founders Scott MacGillivray and Jordi Puig-Suari Leaders in CubeSat Community
 - Experienced Developing, Testing, Operating and Launching "First Generation" CubeSats
- Tyvak™ is Currently Undergoing Start-Up Operations
 - Defining Details of Initial Products
 - Initial R&D and Consulting Services Work

- Wide Range of Products and Services
 - Complete CubeSat Bus and Vehicles for Advanced Missions
 - Direct Sales of Key Components and Product Suites to Support Other Organization's In-House Projects
 - Research and Development of Advanced "Next Generation" Products
 - Consulting Services for Mission and Vehicle Design
 - Launch Integration Services
- Quick Response and Low Cost Solutions
 - Experienced in Rapid Turn-Around Projects
 - Focus on Value-Added Work to Maintain Low Operating Cost Infrastructure
- Blend of Creativity and Proven Engineering Expertise
 - Custom Products and Services From Advanced Components to Full Space Vehicles
 - New Mission and Space Vehicle Approaches that Leverage the Unique Features and Capabilities of CubeSats

Diversification and Maturing of the CubeSat Marketplace

- CubeSat Principles Were Built Upon Keeping It Low Cost and Therefore Accessible on University Budgets
- As With Most New Technologies, It Is Morphed by Other Parties Who See Its Potential (Visionaries)
- CubeSat Technologies Are Moving To The Point Where People Are Thinking of Real Applications (Pragmatists)
 - Have we crossed the technology chasm?
- Diversification is Evident with Wider Variation of Educational and Industry Applications (e.g., NSF, Colony II, SENSE, GAINSTAM)

Growing Need for Mission Assurance and Advanced Capability

- Need to Balance with Keeping CubeSats Simple and Low Cost

Tyvak Nano-Satellite Systems LLC

- As a Natural Progression of Technology, Things Become Increasingly Complex and More Diversified
- In The Beginning...
 - Predominantly 1U CubeSats
 - Simple payloads
 - Mission life of weeks to months
 - Simple attitude control
 - Simple communications leveraging amateur equipment
 - 'Disposable'

• ... Progressing To ...

- Numerous 3U CubeSats
- Multiple payloads on a single CubeSat
- Mission life of greater than a year
- Precision 3 axis attitude control
- Higher frequencies, larger bandwidth, and increasing COMSEC requirements
- 'Higher Reliability'

Subsystem Performance Will Continue to Increase

- Driven by Mission Needs and Technology Development

Subsystem/ Requirement	Parameter	[units]	Current *	Mid-Term	Far-Term
			[Today]	[3 - 5 Years]	[5 - 10 Years]
C&DH	Performance	[MIPS/W]	< 500	<1000	>2,000
	Storage	[GB]	< 4?	< 24	> 64
TT&C	Frequency	[Band]	UHF/ ISM	S-Band	X-Band
	Bandwidth	[kbps]	< 50	< 500	> 2,000
	Data Security		AES/256	NSA Type 1	NSA Type 1
ADCNS	Knowledge	[deg]	<0.02	< 0.005	< 0.001
	Control	[deg]	< 0.5	< 0.05	< 0.01
	Navigation	[m]	> 200	> 50	< 10
Propulsion	Delta-V	[m/s]	< 25 ?	< 600	> 1,000
	Thrusters	[#]	1 - 2?	<= 8	> 8
	I _{sp}	[s]	< 60	< 280	> 320
EPS	Storage	[W-hr]	< 50	> 100	> 200
	P/L OAP	[W]	< 4?	> 10	> 20
Special Needs	Prox Ops		No	< 5km	< 200 km
	Re-Docking		No	Simple	Complex
	Re-Fueling		No	Yes	Yes
Mission Assurance	Redundancy	[strings]	None - Minimal	Selective	Multi-String
	Reliability	[%]	< 80 %	> 80%	> 95 %
Mission Life		[yrs]	<1	< 3	< 7

^{*} Generally known to have flown

Technology Needs are Inter-Related

- Additional Capability Needed to Enable New CubeSat Missions

New Approach Needed to Support Highly Integrated Systems

Tyvak Nano-Satellite Systems LLC

Current Approach to Small Satellites

SoA Space-Rated Boxes / Components

(smallest mass, power, and size)

Collection of Subsystems (Integration of boxes and systems)

Examples:

LM ANGELS

Needed Approach to Get To Ultra Low Power & Size

SoA Space and Commercial Components

(smallest mass, power, and size)

Highly Integrated
System
(Integration of

(Integration of lower level components)

Examples: Cal Poly CP2

CubeSat

6-12kg

Unique Needs of Miniature, High Performance Systems

- A Different Design Approach is Required

- Miniaturization Requires a Highly Integrated System Solution Approach
 - Can't just bolt together group of disparate components
 - Need to be designed as an Integrated System
 - Kit and modular approach can support low tech needs, but not high performance

Examples of Other Complex Miniature Systems

- Utilize Different & New Approaches to Fabrication and Assembly

Tyvak Nano-Satellite Systems LLC

- Use of Novel Manufacturing Technologies
 - Printed Circuit Boards as Structural and Multi-Functional Elements
 - MEMS Technology
 - Rapid Prototyping; plastics and metals
 - Other Manufacturing Materials and Processes
 - Etched Ceramics, Layered Metal Foils, etc.

- Require Many Similar Functions to Space Vehicles
 - Attitude Determination and Control
 - Power Storage
 - Ultra-Low Power Use
 - Communication Interfaces
- Modularity Becomes Less Beneficial
 - The "Module" May Now Be at The System Level

Courtesy of Aerospace Corp

The Tyvak™ *Intrepid* Pico-Class CubeSat Suite

- Integrated High Performance System Bundle

- Intrepid System Board
 - 400Mhz ARM Processor; >512MB of Storage,
 64MB RAM at <0.3 Watts
 - Embedded Linux
 - Integrated Power Regulation System and Sensor Suite
- Low Profile UHF Radio Daughterboard
 - 1W RF Out, Up to 250 kbps
- Multi-Functional Side Panels
 - 28% Solar Cells, Sensors, Torque Coils
- High Strength Aluminum Structure
 - "Pegboard" of Mounting Holes
- Software Tools
 - Open Source OS and Drivers
 - Simple Development Platform Available
- Minimal Bus Volume
 - Core Avionics, EPS, Communication, and Payload Interface in a 9 x 9 x 3 cm Package

For The Latest TyvakTM Intrepid System Board and Suite Info:

Tyvak™ CubeSat Product Family

- Suites of Highly Integrated High Performance Products

Two Complementary Product Groups

- "Pico-Class" CubeSats
 - Advanced Core Capabilities: System Board & Suite
- "Nano-Class" CubeSats
 - Cutting Edge Capabilities: Higher Power, Precision Attitude Knowledge & Control, Radiation Tolerant, High Bandwidth, Fault Handling

Tyvak Nano-Satellite Systems LLC

Tyvak™ CubeSat Product Family

Thank You!

