

Aug 6th , 2011

Presented by:

Danielle George- Project Manager

Erin McCaskey – Systems Engineer

Agenda

- Purpose
- Background
- Firsts
- Activities
- Mission Objectives
- Con Ops
- Mission Timeline
- Risks
- Challenges
- Power ON
- Looking Forward

Purpose

- Encourage interest in Science Technology Engineering Mathematics disciplines and careers (STEM)
- Mission Statement: To develop primary educational resources in the fields of science and technology through the design, construction, and flight of a picosatellite

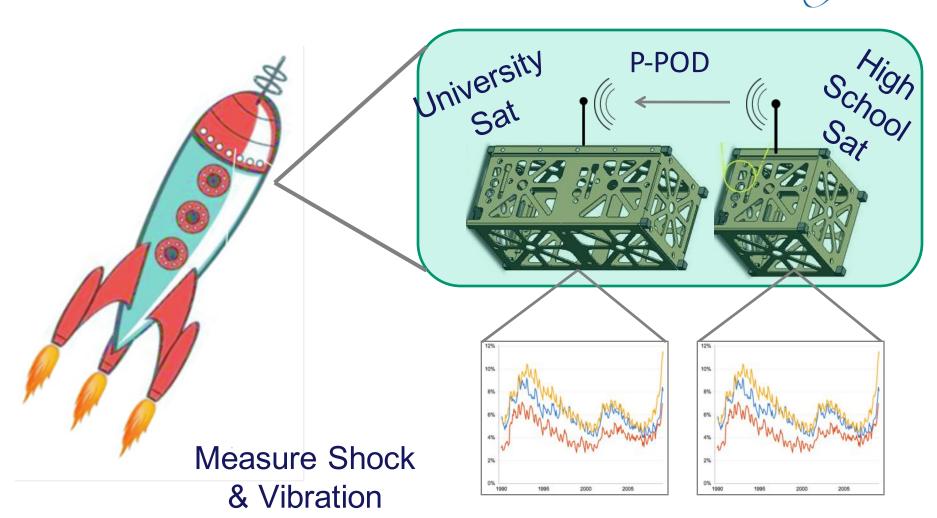
Background Information

- This is the first time Kennedy Space Center has ever partnered with a High School to build and potentially launch a CubeSat
- Only the second high school to participate in CubeSat development

Firsts

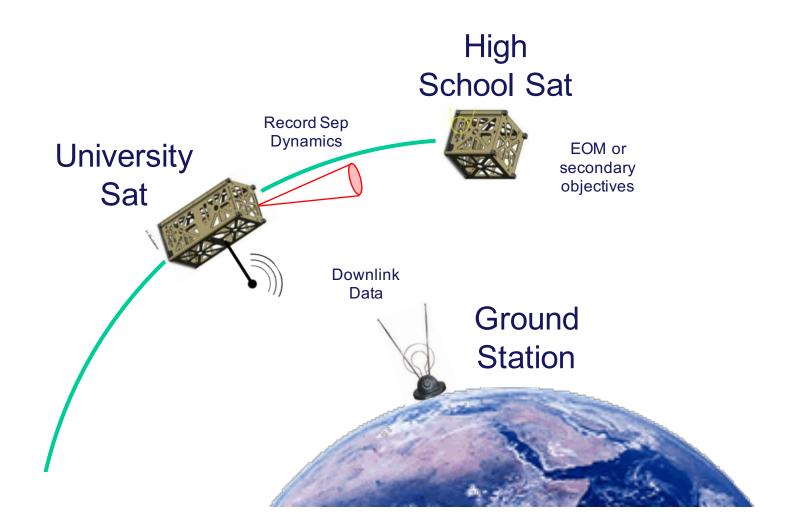
- Pilot Project of Creating Understanding and Broadening Education through Satellites (CUBES)
- Power on throughout launch on a NASA expendable launch vehicle
- Wireless transmitting during flight to another CubeSat

Mission Objectives

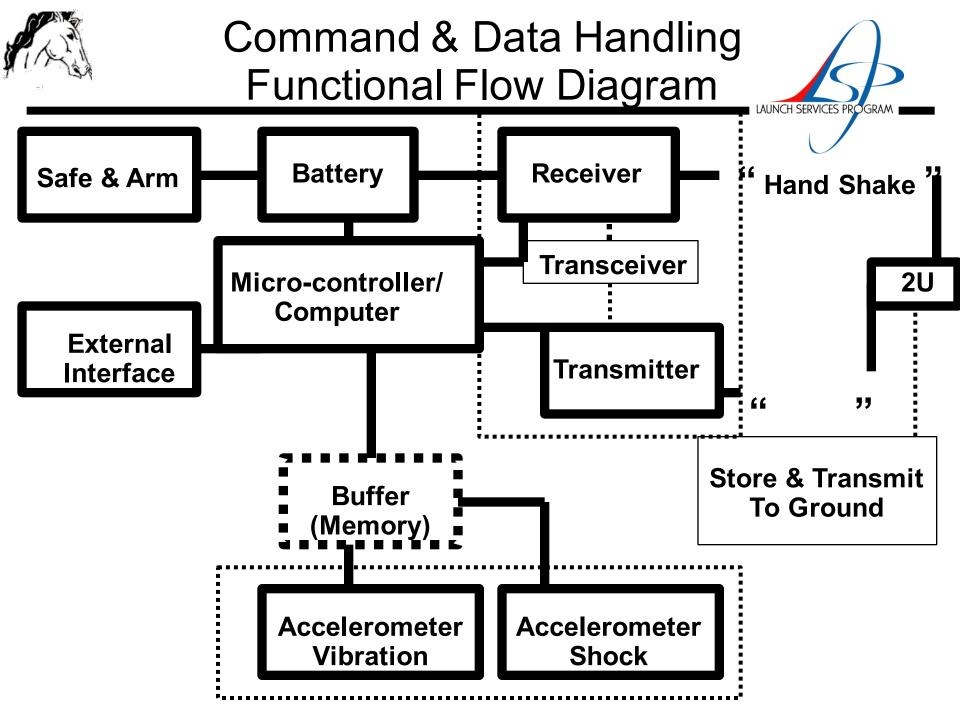


- Measure shock and vibration environments for a CubeSat inside of a P-POD in order to better quantify flight environments
- Demonstrate RF transmission of a CubeSat within a P-POD with less than 1 Watt during vehicle ascent
- Have an image on the aft face of the cube that can be captured by the 2U (University) CubeSat

Concept of Operations - Launch



Concept of Operations – Separation



T-30 days T-0 T+3 minutes* T+? Ejection Ejection Ejection (integration) (liftoff) (ascent) (ejection) + 60 sec + 45 min + 24						
Ground Station(s) /TDRS						Receive data
Univ. Sat	Monitor for liftoff vibration	Acquire/ Receive data (excluding video)	Acquire/ Receive data (excluding video)	Acquire/ Receive data (including video)	Standby / Housekeeping	(EOM) Downlink data
'Stang Sat	Standby mode	Acquire/ Transmit to Univ	Acquire/ Transmit to Univ	Acquire/ Transmit to Univ	Secondary objectives (if applicable)	Secondary objectives if applicable)
P-POD (sensors)	Standby mode	Acquire/ Transmit to Univ	Acquire/ Transmit to Univ			

Activities to Date

- Cubesat Major functions activity
 - Developed Concept of Operations
 - Mission Statement
- Learned about requirements
 - Clay Robot Workshop
- Potential Secondary Missions
 - Feasibility Studies
 - Decision Against
- Requirements Development
- Educational Tours
- Mission Concept Review/ Pre-System Requirements Review presentation to NASA and industry professionals

Activities to Date

- Lessons Learned
- Florida Space Grant Consortium (FSGC) sponsored Balloon Launch Workshop
 - Communication
 - Team work
 - Schedule/ Plan
- Trade Studies
 - Each subsystem research components
 - Find best fit for our mission
- Budgets
 - Monetary Budget
 - Mass Budget
 - Power Budget
- Space Act Agreement signed
- Fundraising/ Sponsors

Identified Risks

- Power On and RF requirements must change for us to launch through the CubeSat Launch Initiative
- Time Limitations
- University selection still to be determined
- Lack of expertise in area and unknown factors driving up later development costs

Challenges

- Power on
 - Powered on from delivery to Cal Poly through launch
 - Potentially 120 days without recharge
- Cooperative System's Engineering
 - Wirelessly Communicating with University Satellite
- Placement of accelerometer

Power On Options

- 1. Turn on/off with vibration (launch window)
- 2. Stay in low power until receive signal from 2U
- 3. Turn on from beginning (safe and arm switch)
- 4. Timer
 - once remove safe and arm
 - send signal
 - launch vibrations
- 5. Power on subsystem
- 6. Hardwire from LSP
- 7. Sending RF signal from ground
- 8. Microphone listening for launch cue

Things to Consider

- Relying on someone else to do it vs. doing it ourselves
- Complexity
- Length of time to implement
- Amount of power needed
- Launch windows
- How to turn back to sleep
- Loss of data depending on time of turn on (capturing full range of flight data)

Looking Forward

- Flat Sat
 - Setting up lab for building/testing
 - Test components interfacing with each other
- Milestone Reviews
 - Upcoming: Preliminary Design Review and Critical Design Review
- Engineering Development Unit (EDU) cube
 - EDU will be tested during a Proof of Concept flight onboard a Sounding Rocket

Thank you!

- Launch Services Program/ Mr. Garrett Skrobot
- Space Dynamics Lab
- NASA Mentors
- MIHS Teachers
- Sponsors

Follow Us on Facebook

Search: MIHS CubeSat

