

Innovative High Specific Performance (HaWK) Solar Array

MMA Design LLC 6 August, 2011

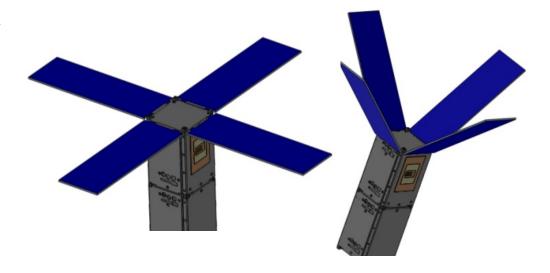
MMA Design Overview

www.mmadesignllc.com

- **Company Details**
 - Colorado company
 - Founded in 2007
 - Aerospace and Design Engineering Firm
 - Nederland, Colorado Engineering Facility
 - Boulder, Colorado Test Facility
 - Broomfield, Colorado Machine shop
- **Three Primary Business Areas**
 - Space Power Systems
 - Space Structures
 - Electro-Mechanical Systems
- **Current System Engineered Products**
 - dragNET De-orbit Modules
 - HaWK High Performance Solar Arrays
 - Modular Bus Structures
 - ESPA-Class Modular Solar Arrays
 - **Gimbals**

MMA's PnP Bus and MDSAS Solar Array

MMA's dragNET De-orbit Module



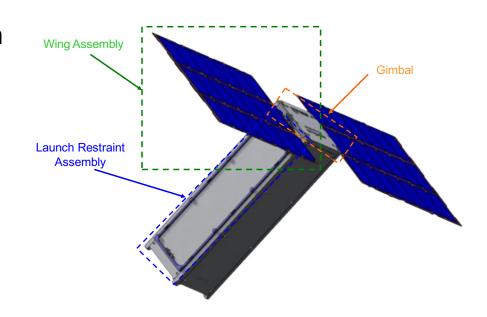
Current State of the Art NanoSat Solar Array

www.mmadesignllc.com

- Typical Features
 - No Sun Tracking
 - Body mounted or deployed fixed wings
 - -60 W/kg
 - 21 W Peak Power
 - 5 W OAP

System Performance Metrics

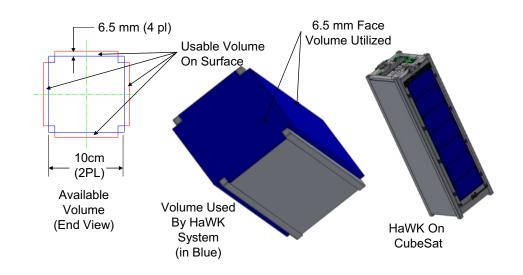
- Specific power ≥ 125 W/kg
- Ability to sun track to dramatically increase Orbital Average Power (OAP)
- Peak power <u>></u> 35 W using existing triple junction CICs
- Stowed position volume using only the unused space between P-Pod and CubeSat
- Highly modular and PnP compatible, reconfigurable based on mission needs



NanoSat HaWK Solar Array

Features

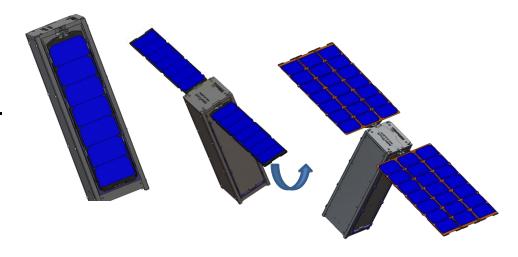
- Sun tracked continuous high power
- De-orbit < 25 years from 700 km orbit
- Maximizes volume and mass for payloads
- 130 W/kg (>200% increase)
- 36 W Peak Power
- 22 W OAP (>300% increase)
- 0.6 kg System Mass
- Standard or IMM CICs
- Modular and scalable to 100 W peak power and 50 W OAP


MMA's NanoSat HaWK is Patent Pending

CubeSat HaWK Packaging

- Innovative system packaging
- Uses available 6.5 mm space between P-Pod and CubeSat
- Maximizes mission payload volume and mass
- High mass and volume efficiency
- Highly modular architecture

AMA Designuc



HaWK Stowed Packaging

HaWK Deployment Sequence

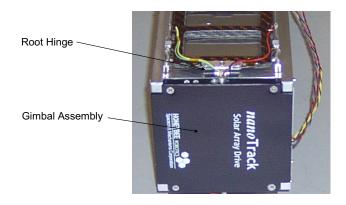
- Initiate launch release, simple heater circuit power
- Root spring rotates center panel
- Spring pre-loaded Flipout side panels unfold
- Deployed state reached at hinge hard stop
- Enable and command SADA to articulate in sun tracking mode

Stowed to Deployed and Tracking Mode

HaWK Wing

- Graphite panel
- Kapton overlayment
- Spectrolab UTJ CICs or equivalent
- Soldered interconnects (typically < 2 year missions)
- Mass efficient \(\) deployed structure

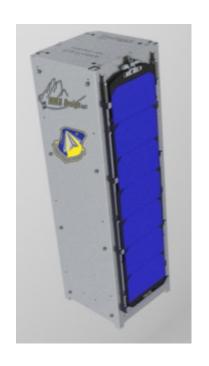
lMA Design ilc


HaWK Engineering Unit

HaWK SADA

- Partnered with Honeybee Robotics to jointly develop nanoTrack
- Patent Pending
- 3U CubeSat bus form factor – fits in 6.5 mm unused space on end
- Dual wing single axis rotation
- ± 180 deg range of motion

HaWK SADA Engineering Unit and Test Box



HaWK Hold Down Release Mechanism (HDRM)

www.mmadesignllc.com

- High margin release design
- HDRM supports wings during launch environment
- Initiate simple heater circuit
- HDRM releases for wing deployment

HaWK Stowed

HaWK Engineering Unit Deployed

HaWK Engineering Unit Stowed

Conclusion

- HaWK establishes State of the Art performance exceeding all system performance metrics
 - 130 W/kg
 - 22 W OAP
 - 36 W peak power
 - Efficient packaging
 - Sun tracking
- Technical Readiness Level 4/5
- Currently under Phase II SBIR development with AFRL
- Space Act Agreement with NASA to apply to future NASA missions

