

Plug and Play Attitude Control

Craig Clark and Dr Kevin Worrall

ADCS Design Objectives

- Single board ADCS solution
- Handles complete ADCS task
 - Limited interaction from OBC required
 - Ability to set the autonomous mode transitions
 - Telemetry form the ADCS unit will keep you updated
- Include low power/safe mode ADCS on board
- Easily adapatable to different sensor and actuator technology.
- Inherently low power, low mass, minimal volume, low cost, low system overheads and high performance.

Just add Magnetorquers...

- Complete ADCS task runs on board
 - I2C telemetry and telecommand
- On board sensors include:
 - Magnetometers
 - Rate gyro's
 - Optional GPS
 - Interfaces for available for SIX 2-axis
 Analog Sun Sensors
- SIX current controlled Magnetorquer Drivers On Board
- Internal Parameters can be optimised easily for different mission requirements.

ADCS Architecture

Attitude modes

ADCS Simulation

- To provide confidence in the performance for specific missions, bespoke orbits and parameters can be simulated within our Matlab model.
- From this, changes can be made to the control parameters to obtain the optimally performance
- The basic controller design suitable for most scenarios unmodified (plug and play).

Matlab Simulation Model

- All sensors outputs based on measured data from real sensors.
- All actuators models based on measured data
- Disturbances modelled using high fidelity models

Simulation Model

ADCS Customisation

- Additional modes can be included
 - If additional modes or experimental modes are required, they can be included
- Additional sensors can be included
 - New sensors? Improved sensors?
 - Interfaces exist for these to be added in and they can be easily combined with the other sensor data
- Additional actuators can be included
- FPGA can be reprogrammed in flight
 - Upload new versions of HDL code to improve performance.
- Development roadmap includes the addition of mass memory for log data

3 Axis Reaction Wheels

- Inertia disk 5x10⁻⁶kgm²
- Angular momentum
 2.6x5x10⁻³kgm²/s @
 5000RPM
- Nominal torque 2-3mNm
- Estimated total mass (3 wheels plus electronics)
 <200g.
- Ready for Ukube-1 end 2011.

www.clyde-space.com

- facebook.com/clydespace
- twitter.com/clydespace Linkedin groups: cubesats