

ISIS – Innovative Solutions In Space

Closing the Link

Communication System Technology Developments

Joost Elstak

ISIS Contents

- Introduction
- Need
 - Current Challenges
 - The QB50 example
- Solutions
 - Software Defined Radio
 - Spread Spectrum
 - Ground Station
- Implementation
 - Next generation Tx, Rx, Trx
 - Next generation Ground Stations
- Conclusions

Current Comms Challenges

- Increase data transfer
 - Increase data rate
 - Increase contact time
- Operate in constellations/clusters
 - Inter-satellite interference
 - Communication with multiple satellites
- Finding a solution within CubeSat constraints is very challenging
 - Form, Fit, Function
 - Programmatics (time & money available)
- Do better in a more challenging environment

The QB50 example

- Initiative lead by von Karman Institute
- Constellation of 50 2U Cubesats
- Single launch deployment
 - 300 km, 80° inclination
 - 3 12 weeks lifetime
- In-situ measurement of the lower thermosphere
 - Standard sensors suite
 - Measurement during orbit decay
- Expected KO Q4 2011
- Expected launch 2013-2014

ISIS ISIS in QB50

- Launch service providers
- Communication WP

Main interface between:

- Launcher
- Cubesat teams
- Ground stations

- Launch
- Operations
- Communications

- Launch
 - 50 Cubesats in one launch
 - 50 development teams
 - Different mass, ballistic coefficient, etc...
 - Possible collisions between satellites
- Operations
- Communications

- Launch
- Operations
 - Extremely short lifetime (3 12 weeks)
 - Extremely short commissioning (~ 1 day)
 - Short satellite passes:7 min max at the beginning4 ÷ 5 min max at the end
 - TLE not reliable during decay
 - Scientific data cannot be lost
- Communications

- Launch
- Operations
- Communications
 - 10 ÷ 30 sats visible at the beginning at the same time
 - 2 ÷ 5 sats visible at the end at the same time
 - Limited spectrum available
 (Radio Amateur bands, VHF / UHF / S)
 - Limited power onboard
 - Single satellite tracking is not efficient

ISIS) Software Defined Radio

- Move complexity to Software
- Standard hardware platform
- High flexibility (modulation / datarate)
- Simple reconfiguration / upgrade

SDR Transmitter / Transceivers

Ground station Transceiver

Software Defined Radio

- Bandwidth efficient modulations:
 - BPSK, QPSK
 - Variable datarate: 1.2 ÷ 1000 kbit/s
 - Good performances with noise
- Advanced channel access mechanisms can be used
 - FDMA & TDMA can have a lower efficiency (frequency drift, clock drift)
 - CDMA can be a viable anternative

Code Division Multiple Access

- Used in 3G phones
- Spectrum is spread over a wider bandwidth using a pseudo-random noise generator
- Less interferences due to narrowband signals

Increase contact time

- Ground station network
 - Automatic data delivery
 - Ex: RASCAL, GENSO
- All limited to 1 satellite at once
 - Limiting factor for QB50
 - Requires ground station capable to receive multiple satellites at once
 - Massive increase in contact time

Omnidirectional ground station

- Tracking ground station has limited field of view
 - Limited by antenna beamwidth
- Omni-directional ground station can monitor the whole sky
 - Simultaneous multiple satellite reception:
 10 ÷ 20 in QB50
 - Requires a more complex receiver
 Multiple simultaneous SDR receivers
 - TLE are not necessary:
 They can even be computed!

Omnidirectional ground station

Omni-directional

- Cheap setup, easy installation
- Omni-directional antenna: ~3 dB gain
- Low datarate: 1.2 ÷ 9.6 kbit/s
- Simple requirements for roof mounting: no moving antennas, small area required
- Multiple receivers
- Medium computational power required
- Can compute satellite TLEs
- GPS receiver for precise frequency, time and position reference

Higher Speed: S-band

- Wider bandwidth available
 - Amateur: 2 MHz
 - Commercial: requires license
- High datarate possible
 - $-38k4 \div 1000 \text{ kBit/s}$
- Short contact time
 - 5 min pass
 - 6 ÷ 18 Mbyte per pass

- Communication is limited by average power consumption (~1.5 W avg per orbit)
- Attitude control may be needed depending on satellite antenna
 - Complex during orbit decay
 - Can be compensated with a higher antenna gain on ground
- Downlink in radio-ham frequencies or commercial S-band (shared)
 - Maximum speed should be traded with available bandwidth and number of users

ISIS Implementation

ISIS Next Generation Transceivers

- TrxUV/TRXVU
 - High output power (up to 1 W)
 - BPSK and QPSK
 - Fully software defined transmitter
- Availability: H1 2012

Next Generation Transmitters

- TXS-100/1000
 - Fully software defined transmitter
 - BPSK, QPSK and GMSK capable
 - Datarate up to 1Mbit/s
 - > 27 dBm output power
 - < 4 W power consumption</p>
- Availability:
 - 38k4: Now
 - 100 kbit/s: Q4 2011
 - 1 Mbit/s: Q2 2012

Next Generation Ground systems

- Completely software defined
 - Datarate, modulation and frequency agile
 - Replacement for out of stock ICOM-910H
 - Wideband receiver, datarates up to 1 Mbit/s available
- VHF / UHF / S-band
 - Up to 3 m dish
 - Radome available for hostile environments
- Central control console for easy operations
- Omnidirectional systems investigated

ISIS Conclusions

Challenges

- Do better in a more challenging environment
- Maximizing data received within challenging CubeSat constraints
- Operate constellations
- Solutions
 - System level optimization
 - New technology implementations on ground and in space
- Current technology and smart solutions can solve these problems

Code Division Multiple Access

- Pseudo-random noise helps in spreading the bandwidth
- If the pseudo-ramdom sequence is known, data can be de-spread
- If the sequence is unknown, the signal looks like white noise
- Multiple sources can use the same channel without interference

Channel coding

- FEC gives high gain in link budget
 - AO-40: ~ 5 dB gain @ BER = 10^{-6}
 - AO-40: 40% code rate
- Limited use in Cubesats
 - Usually link budgets were not critical, a higher antenna gain or output power was possible
 - Channels are usually bandwidth limited
 - AX-25 does not support it natively (FX-25)
 - Added complexity, longer development time

Channel coding in QB50

- It does not need to be compliant with AX-25
 - No TNC available for BPSK, QPSK
 - SDR or soundcard modem needed
 - Protocol should be public freely available software decoder would be a plus
- Many new developments in the amateur world are going this way (ARISSat)
 - AX25-like protocol, with convolutional codes

- Communication is limited by average power consumption (~1.5 W avg per orbit)
 - 5 ÷ 10 W power consumption for few minutes every orbit
 - Only one ground station contact per orbit
- Attitude control may be needed depending on satellite antenna
 - Complex during orbit decay
 - Can be compensated with a higher antenna gain on ground
- Requires precise TLEs
 - Complex during orbit decay
 - Use VHF/UHF beacon for more precise tracking

Omnidirectional ground station

- Beam steering antenna array
 - No moving parts
 - High gain
 - Multiple satellites visible: 10 ÷ 20
 - Requires a quite complex receiver
 Multiple simultaneous SDR receivers
 - High computational power required