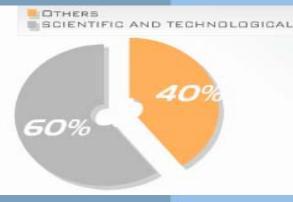
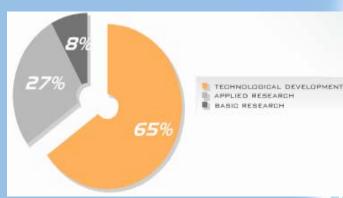
INTA PICOSATELLITE OPTOS

MISSION & SUBSYSTEMS

Iván Lora


lorafp@inta.es

April 20, 2007

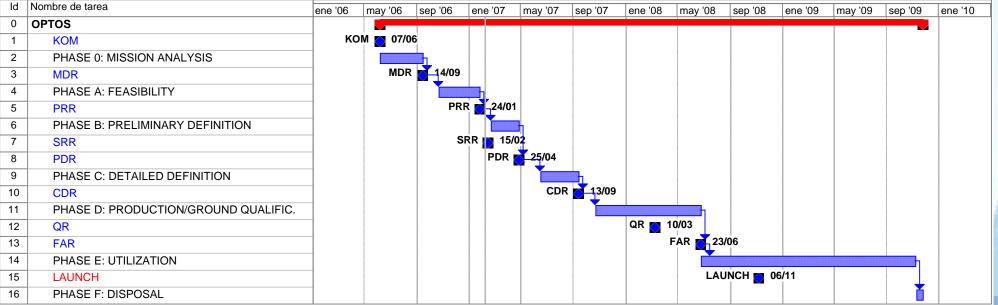

INTA

www.inta.es

- National Institute for Aerospace Technology (INTA), an Organism under the supervision of Spanish Ministry of Defence.
- INTA's staff is comprised of over 1400 individuals, of whom approximately a thousand are dedicated to R+D activities. More than 40% of the Institute's personnel has a university degree.
- □ The INTA budget is more than one hundred million euros.
- Income comes from the State Budget and from Its commercial operations

Budged Distribution

Activities


INTA has some lines open in the field of small satellites (MINISAT-01, NANOSAT-01). One of the last initiatives is OPTOS Project.

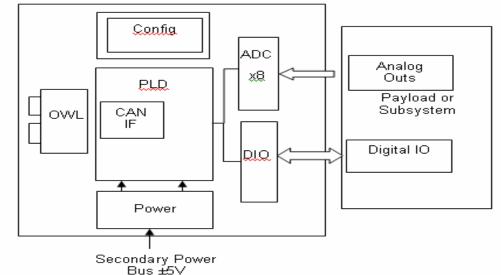
MISSION

- OPTOS: Picosatellite system used as a technological platform to demonstrate the capacity to develop low cost and short timeline projects. The main goal is to develop a platform to provide an "easy" access to the Space for Spanish scientific and business community. Ambicious mission with 5 payloads from different scientific fields:
 - Magnetism:
 - GMR-S (Giant MagnetoResistive sensors for magnetic field measurement)
 - Radiation:
 - ODM (Evaluation of total radiation dose using commercial RadFET)
 - OPTORAD (Optoelectronic radiometer for protons)
 - Optics:

- SOI (Microphotonic devices for temperature measurement)
- CAMERA (Low resolution camera (~200 m) using CMOS technology)

In addition, some new solutions and technologies will be included in the platform. The project budget is about 1'5 million euros.

SUBSYSTEMS


OBDH

п

Distributed OBDH architecture based in CAN protocol using with a LEON2 processor to run the high level software. and payloads have their own specific and miniaturized DCUs (Distributed Control Units).

OBCOM

- Internal wireless optical communications subsystem using OWLs (Optical Wireless Links) and wireless CAN is considered as the main TM/TC bus for the satellite, so it is mandatory for all this units.
- □ The unit joined to the ground communications subsystem (TTC) will avail oneself a LEON2 embedded processor, supplying extra software capabilities; and the elements of the rest of **DCUs** will be the next:
 - Power IF: The satellite power system should supply ±5V (500mA)
 - ADC: Each Processing Unit includes an Octal Analog to Digital Converter (12 bits TBC) available for its payload or subsystem
 - DIO: Supply discrete digital input-output (clocks, actuators, etc.)
 - OWL: Optical wireless link
 - PLD: FPGA with VHDL core
 - **Config:** Configuration memory for the PLD

SUBSYSTEMS

EPS: Power subsystem with external Triple-Junction GaAs (1 string with 6 cells x 4 sides) as primary source and Li-ion battery. The eps will use DC/DC converters to distribute regulated +5V, +/-12V supply to the different subsystems and payloads.

п

- Antennas system:
 - OPTOS could work in a frequency band in both directions. The possible bands considered:
 - VHF(145MHz)
 - UHF(435MHz)
 - Or in dual band:
 - VHF(Tx) / UHF(Rx)
- Transceiver:
 - Separated RX chain (receive TC) and TX chain (send TM)
- Terminal Node Controller (TNC):
 - Modem:
 - Modulate the TM to be sent to ground station and acquired from the OBDH
 - Demodulate the received TC to be sent to OBDH to process them
 - Process capacity SW
 - Translate into the established protocol the data flux in both directions

MPPT CHARGE \Leftrightarrow CNTRL \circ lithiumion batterv x4 Array topology Transponder TNC TC DIPLEXOR TRANSCEIVER OBDH MODEM SW TM

3

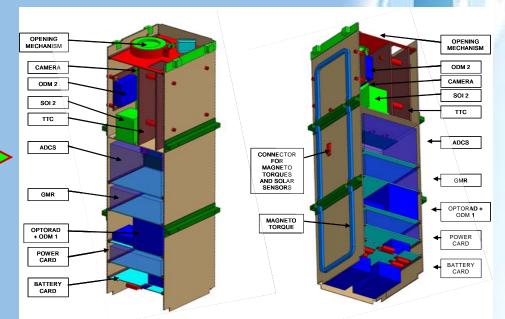
PPT

not DET

ADCS with a momentum wheel to stabilize in one axis, magnetometers, 3 magnetotorques and a solar sensor

3-

iunct.


GaAs

SUBSYSTEMS

STRUCTURE

- EXTERNAL STRUCTURE: Cubesatkit standard structure (solid walls 3-U)
- INTERNAL STRUCTURE: Internal composite structure to support all the elements and to allow easy integration and test

OPTOS SYSTEM -CONFIGURATION

....

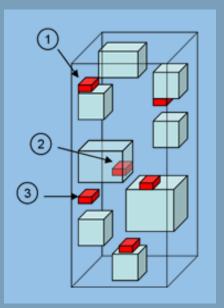
- **TCS** (Thermal Control Subsystem)
 - Passive thermal control based in the selection of materials, internal arrangement and paints or MLIs

INTA PICOSATELLITE OPTOS PROJECT

PAYLOADS

Jose Antonio Collado colladomj@inta.es

April 20, 2007

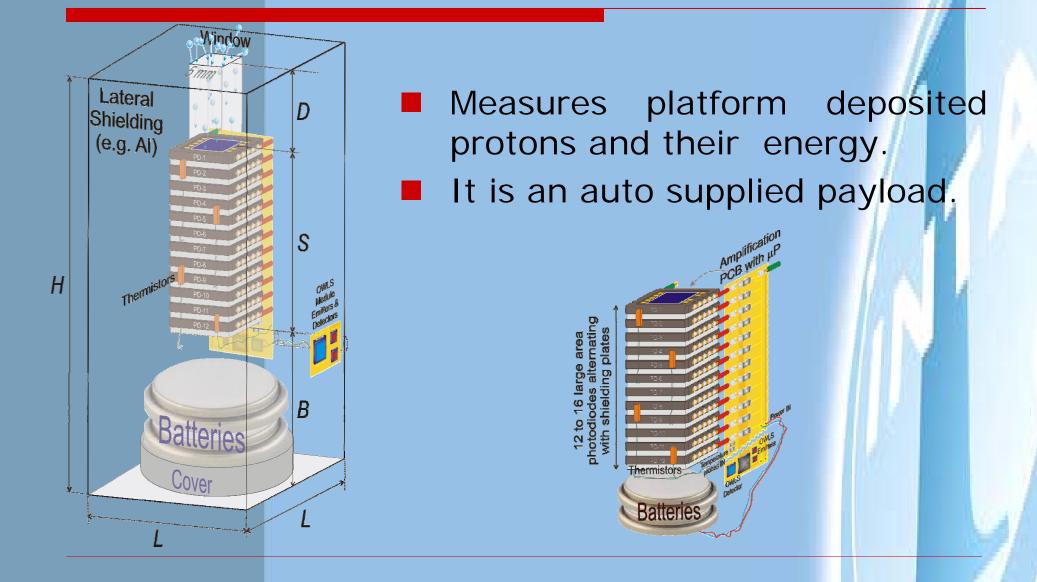

MAGNETIC PAYLOAD GMR-S: Giant Magneto Resistance Sensor

High Resistance		Low Resistance	
Electrical Current		Electrical Current	Magnetic Field
	Ferromagnetic Film		Ferromagnetic Film
	Non Magnetic Film		Non Magnetic Film
	Magnetization	↓	Magnetization

In presence of a magnetic field the GMR-S electrical resistance increase considerably

- Low cost technology
- High sensitivity
- Low consumption
- Non space tested

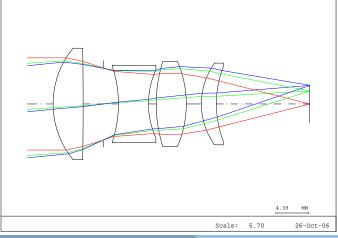
RADIATION PAYLOAD ODM – Optos Dose Mapping System



OPTOS Subsystem/Payload

- Dose mapping during the mission in several satellite interest points considering mass distribution (shielding).
- Validation and correlation of different models (AP8, AE8, ...) and tools (SHIELDOSE, GEANT4) used to calculate missions dose mapping.
- Design dosimeters based in RadFET technology for spatial use.

RADIATION PAYLOAD OPTORAD-Optoelectronic Radiometer


OPTOS CAMERA

DESCRIPTION

- Panchromatic-low resolution electro-optical system for Earth observation in a LEO orbit.
- **Working wavelength band of 0.45 \mum a 0.7 \mum (visible spectrum).**

SCIENTIFIC GOALS

- U Verify theoretical model of radiation-induced defects in optical glasses.
- Maintain the focus and image quality within a temperature range of ± 20°C by using a passive athermalization mechanical system.

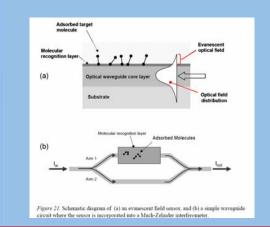
Refractive objective based in a modified Cooke Triplet

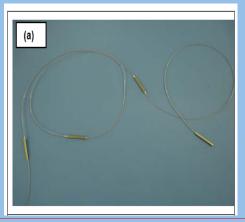
1/3" CMOS SENSOR Power consumption: < 320 mW Dimensions:28.8x28.8x5.6mm

Power consumption: < 0.8 W

Dimensions:17.16x19.25x14.29mm

1/3" CCD SENSOR


OTHER OPTICAL SENSORS


SCIENTIFIC GOALS DURING MISSION LIFETIME

Evaluate the viability and feasibility of the optical sensors proposed to measure TEMPERATURE during aerospace missions

DESCRIPTION

- SOI- Silicon on Insulator: Two types of optical sensors will be used to measure the temperature of the OPTOS camera and satellite structure.
 - Mach Zehnder based Microphotonic device
 - Fiber Bragg Grating (FBG)
- Classical thermocouples will be installed close to the optical sensors to assure their correct behaviour

