The ION Cubesat

Mike Dabrowski
Ex-Graduate Student
University of Illinois at Urbana-Champaign

04/28/06 - Cubesat Workshop

Overview

- ION History
- Mission
- What's onboard
- Software System
- ION Operations Model
- Lessons Learned

History

- Illinois Tiny Satellite Initiative (2001)
 - ION Cubesat
 - <u>Illinois Observing Nanosat</u>
- April 2005 Delivered ION
 - Awaiting DNEPR June 28, 2006
 - 3.5 years
 - Over 100 students

_	Costs:	Parts	35000
		Equipment	20000
		Shop	30000 (700 hrs)
		Launch	85000
		TOTAL	170000

Organization

Interdisciplinary Design Class

- ~15 Students / semester
- Juniors/Seniors
- 2 Semesters
- AE, CE, EE, ME, TAM, CS, GE
- Senior Design credit
- 2 graduate student PM/TA's
- Minimal faculty involvement
- Teams (3-4)
 - Software, Electrical,
 Mechanical
 - ACS, Communications

ION Mission Objectives

- Interdisciplinary senior design course for undergraduate students
- Measure oxygen airglow
- Test microvacuum arc thruster system
- Test SID flight computer
- Take photos!
- Demonstrate ground-based attitude control

Flight Computer

- Small Integrated Datalogger (SID)
 - Tether Applications
 - Hitachi SH7045 SH2
 - 7 Mhz, 1 MB RAM, 8 MB Flash
 - RTC's, Temperature
 - 32 A->D, 24 GPIO

Payload

- Photo Multiplier Tube (PMT)
 PB-300 CMOS Camera
 - Hamamatsu H7155
 - 763 nm filter
 - One photon one pulse
 - Protection diodes/logic

- - 640x480 black and white

Payload (cont...)

- 4 Electronic Thrusters
 - Arc across cathode + anode
 - Cathode material ejected
 - 10 uN/W
 - 4 secs firing = 90 deg in 10 min
 - Thrusters+Electronics 150g
- Conductive Deposition Monitor
 - Detect exhaust material

Communications

- Transceiver
 - TEKK KS960
 - 437.505 Mhz
 - Replace electrolytic capacitors!
 - Don't overheat!
- TNC
 - PicoPacket
 - 1200 baud
- Dipole Antenna
 - 1.04 SWR

Attitude Determination & Control

- Honeywell HMC2003 Magnetometer
- Solar cells as sun sensors
- Torque Coils

Power

- Emcore Solar Cells
 - ~27.5% Eff.
 - 5 on each side
 - Buy the ones w/ diodes!
- Panasonic CGP345010
 - 2 x 1400 mAh
- Peak Power Tracking
- Budget
 - 5 Watts peak generation
 - Avg 3 W 1 W ineff = 2 W
 - Avg. Consumption 1.25 W

What does it all look like?

Theory vs Practice

Some observations....

ION Functional Requirements

Software Design Decisions

- 1) Abstract away details of hardware
 - Drivers components
 - Responsible for manipulating hardware
- 2) Simulate subsystems in software
 - Applications components
 - Responsible for using hardware when scheduled
- 3) Write a generic scheduling system
 - ION is just a fancy radio control toy
 - Allows use of any device as scheduled from ground
 - Allows for mission to be changed
 - Makes no assumptions on device use

Some Technical Details...

- Everything from scratch...
 - Operating System, Scheduler Cooperative Multitasking,
 Alarms/Callbacks, Messaging, Time Keeping, File System, Device Drivers, Boot Loader, ELF Format Binaries, Memory
 Management, Custom Communications Protocol, JPEG compression, error logging system
 - 18 months
 - 35,000 lines ASM/C/C++
- Don't recommend this. Follow COTS philosophy
- Do's:
 - CVS, Bug Tracking, Code reviews

ION Operations

- ION is a passive instrument
 - 1) Make schedules of work on the ground
 - 2) Upload (ftp-like) schedules
 - 3) "Rehash" appropriate applications
 - 4) Wait
 - 5) Download and interpret results
 - 6) Repeat

A Few Lessons Learned

- Create clear mission requirements
- Give students a full overview (Regular turnaround)
 - Document! Distinguish between historical + current
- Use intelligent/independent hardware subsystems
 - Digital communications buses. Use I2C or USB or similar.
 - Define interfaces early!
- Use COTS hardware and software
- Make sure CS guys know EE stuff
 - Logic analyzers, interpret datasheets, implement specs, embedded dev.
- Worry about launch later
- Design for test

Further Information

- University of Illinois at Urbana-Champaign
 - ION Cubesat: http://cubesat.ece.uiuc.edu
 - Dr. Gary Swenson (swenson1@uiuc.edu)
 - Dr. Victoria Coverstone (vcc@uiuc.edu)
 - Dr. Matt Frank (mif@uiuc.edu)
 - Purvesh Thacker (pthakker@uiuc.edu)

- University of California San Diego
 - Mike Dabrowski (mjdabrow@interave.net) (I need a job!)
 - The Design of a Software System for a Small Space Satellite

