

CubeSats @ ALAA SmallSat Conference *.Sat & GeneSat-1 Overview

Eric Lee, *.Sat Project Manager http://ssdl.stanford.edu/stardotsat/ leeep@stanford.edu

> 8 August 2004 Utah State University

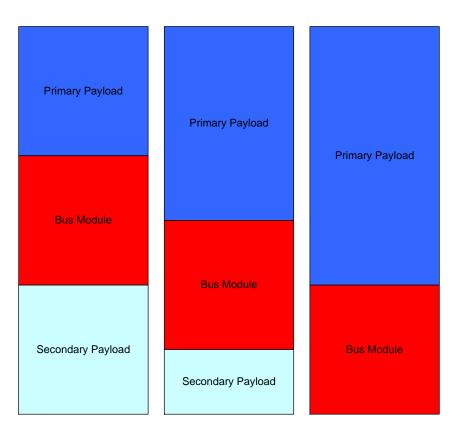
Logan, UT

Introduction

- Today's Primary Goal...
 - High-level overview of services provided by the *.Sat Spacecraft Bus to the GeneSat-1 Mission Payload Module
- *.Sat Mission Statement
 - To provide a standard CubeSat Bus as a support platform for educational and scientific space experiments.

Nomenclature

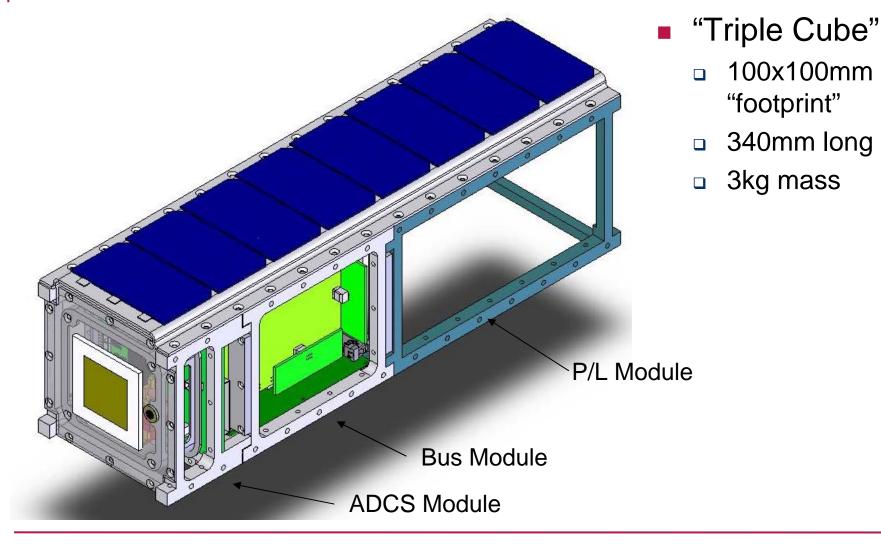
- *.Sat CubeSat Bus (covers Ground Segment and Space Vehicle)
- GeneSat-1 Mission and Payload


Agenda

- Topics of discussion
 - Basic requirements
 - Design status
 - Spacecraft/Bus layout
 - System interfaces
 - GeneSat-1 Mission Payload
 - Bus Services to payload (Subsystems)

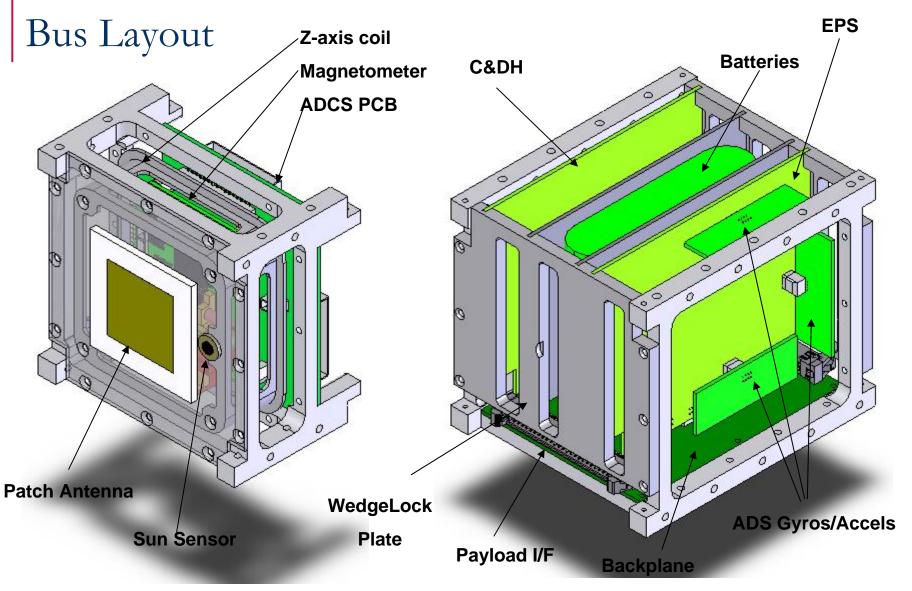
Basic Requirements

- "Standard" Bus
 - Adherence to the CubeSat Design Specification
 - Modular configuration
 - **1**.0, 1.0, 1.0
 - **1**.5, 1.0, 0.5
 - 2.0, 1.0 (no active ADCS)
 - Standardized interface(s)
- LEO Orbit
 - Fly as secondary payload
- One-year Design Cycle
 - Must be complete on 30 September 2004 in a "flightready" configuration

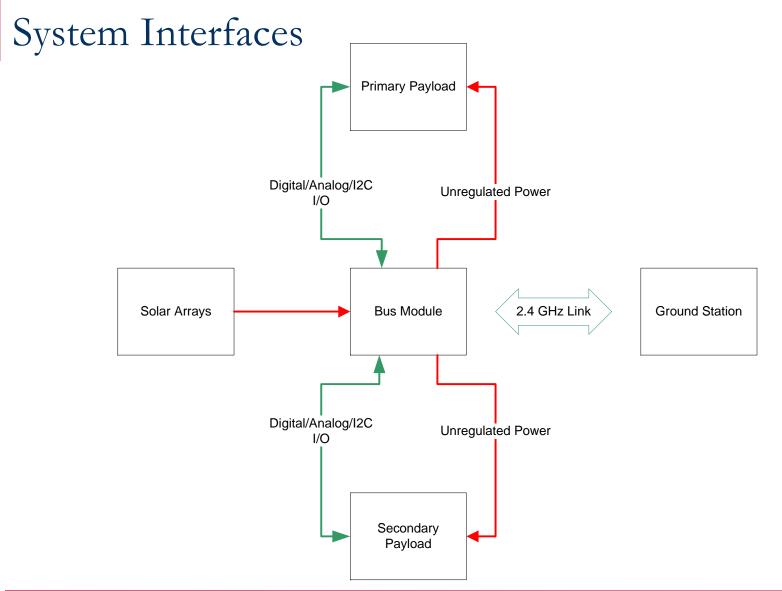

Design Status

Heritage

- NemaSat Bus Program, 2003
 - Lead by Mike Gonzales
- Current status
 - Electronics are fabricated and in test
 - Structure fabricated and undergoing Alodine processing
 - Environmental testing to begin in September timeframe
 - Software programming and testing ongoing
 - On track for delivery of hardware 30 September 2004. Validation and test may not be complete.
 - Payload integration with initial EDU in November 2004
 - Launch slated for Autumn 2005 aboard Dnepr (SS-18) LV



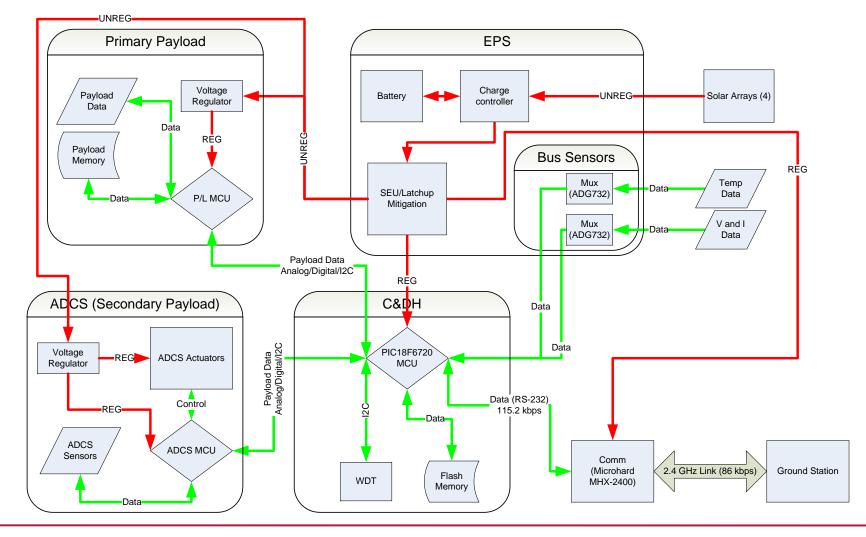
Spacecraft layout



AIAA SmallSat Conference / *.Sat & GeneSat-1 Bus Overview

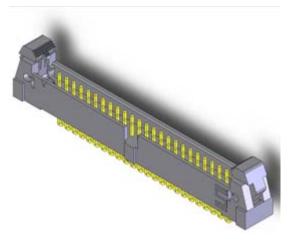
NASA/Ames Astrobionics GeneSat-1 Payload

- Self-contained genetic research experiment
 - 8-10 wells
 - Fluidic media
 - Optical sensor system
- Gene-expression in E. coli bacteria
 - Micro-g environment
 - Space radiation
- In-Situ Genetics (ISGEN)
 - GeneSat-1 is a precursor to the future ISGEN (In-Situ Genetics) missions (bigger bird)
 - Will fly other increasingly complex organisms
 - Opportunities for launches up to twice per year

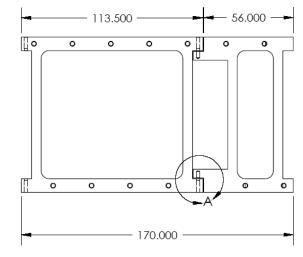


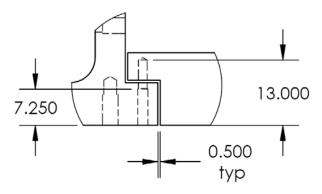
Data/Power Flow

Bus Services to Payload


- Attitude Determination and Control (ADCS)
 - Passive ADCS ("Zero-Cube" option)
 - Permanent magnets and hysteresis rods
 - Pointing aligned to Earth's magnetic field
 - "Active" magnetic torque system
 - Onboard orbit propagator and magnetic field model
 - Sun sensors and magnetometer
 - "B-dot" rate-damping and Nadir-Pointing modes
- Communications
 - 2.4 GHz ISM-band radio (Microhard MHX-2400)
 - Circularly-polarized patch antenna (up to 8dBi gain)
 - Up/Downlink of data/telemetry/commands

Bus Services to Payload (continued)


- Command and Data Handling (C&DH)
 - PIC18F6720-based architecture
 - Three banks SPI Flash memory (2 MB each)
 - S/C health monitoring (T, V, I, accels/rates)
 - Single-event upset and latch-up mitigation
 - Dual payload interfaces
- Software
 - Salvo Pro RTOS
 - Time stamping and data exchange w/ payload (via I²C)
 - Command set for Payload(s)



Bus Services to Payload (continued)

- Electrical Power (EPS)
 - 28% Spectrolab UTJ cells on four body panels (8 cells/panel)
 - Unregulated Bus Voltage to Payload(s)
 - □ 2.0 4.0W peak power to Payload(s)
 - Protection circuits (hardware-based latch-up mitigation)
 - Hysteresis discharge protection for Li-Ion battery banks
- Structures
 - Standardized mechanical interface
 - Payload module may be designed by customer if desired
 - Alodined 7075 Aluminum frames fabricated with Electrical Discharge Machining (EDM) process
 - Anodized 5050 Aluminum sheet metal body panels

Bus Services to Payload (continued)

- Thermal
 - Computer simulation in Thermal Desktop/SINDA
 - Bus operational range from +10°C to +70°C
 - -10°C to +75°C range for hardware allowables
 - Bus thermally isolated from Payload(s)
 - Primary payload has access to cold-plate open to space
 - Thermally benign environment for biological payload
 - +3°C to +37°C ±3°C survival range
- Ground station
 - 6-meter dish at Stanford
 - Full-motion tracking
 - Mercury Ground Station software (Internet-based infrastructure)

Questions and comments?

- Key supporters
 - NASA/Ames Astrobionics
 - John Hines and Bruce Yost
 - Space Technology Center
 - Dave Engelbert
 - Stanford University Space Systems Development Laboratory (SSDL)
 - Professor Bob Twiggs
 - CalPoly CubeSat Team
 - Professor Jordi Puig-Suari
- Contact
 - <u>http://ssdl.stanford.edu/stardotsat/</u>