

Attitude Determination and Control for PACE -Platform for Attitude Control Experiment

<u>Jung-Kuo Tu¹</u> Jason Chen-Chi Chu¹ Brian Shi-Hua Wu² Ken Tsung-Hsin Tsou¹

Department of Aeronautics and Astronautics ¹ Department of Electrical Engineering ² National Cheng Kung University, Taiwan, ROC

- The mission of the PACE project is to offer students opportunities to experience the whole development process of satellite design, analysis, assembly, integration, test, launch and operation.
- Primary experiment

Perform three-axis stabilization of a pico-class satellite.

Secondary experiment

Verify self-made MEMS sensors for space applications.

NSPO : YAMSAT (2001-2002) NCKU : PACE (2003-)

PACE Overview

≻A double cube design

- ➤ Three-axis stabilization requirement --Pointing accuracy 5°
- Two CPU design
 -- 8051-based: C&DH and ADCS
- **>MEMS sensor demonstration**
 - -- Coarse sun sensor
 - -- Temperature sensor

PACE Configuration

MEMS Payload

To test and verify self-made MEMS sensors in space environment.

- MEMS coarse sun sensors
 Assist attitude determination
- > Flexible skin temperature sensors
 - Validation of passive thermal control
 - Monitoring of PACE SOH

MEMS Coarse Sun Sensor

The present sensor was developed from single_crystalline silicon solar cells.

•The sensors are place on the out surfaces of four outside-walls and top-wall. Attitude information can be deduced from the signal of the sensor.

Platinum resistors as sensing materials are sandwiched between two polyimide layers.

Flex. skin sensor finished products.

MEMS platinum resistor temperature sensor has **linear output** and a **sensitivity of 4.5 mV/°C**

The performance of temperature sensor.

Structure and Thermal Analysis

> Stress & Dynamic Analysis

Lateral mode : 652 Hz >> 25 HzLongitudinal mode : 1079Hz >> 40Hz Yielding stress : 440MPa >> 30~40MPa

> Thermal Analysis

Worst hot and cold analysis with ADCS 3-axis stabilization requirement

The results are acceptable.

1.20+007 1.09+00 3.82+00

Max. Stress

Electrical Block Diagram

platform

PicoSat Project TAIN

Telemetry Tracking & Command

UHF Communication

- Modified Yaesu VX-1 Transceiver
- Frequency: 430MHz band (UHF)
- FSK Modulation
- Transmission: AX.25 1200bps (Half Duplex)
- 17 cm Dipole Antenna
- Power Consumption: 2W (Contact), 0.2W (Standby)

Beacon

- Frequency: 144MHz (VHF)
- RF Power: 0.1W
- Power Consumption: 0.2W
- Code: Morse code
- Word rate: 20WPM
- 50 cm Monopole Antenna

Subsystem	C & D H	A D C S	Ma	a g n e	tic	M agneto	Gyro	Coarse	M om en tu m	D R U	C W	T T & C	Ant.	R e m a r k
Mode		C P U		Coil		meter		Sun	Wheel			$R \ge T X$	Deploy	
			х	Y	Z			Sensor						
Launch	O N	-	-	-	-	-	-	-	-	-	-	-	A fter t sec O N	R elease from P - P O D
Safe	O N	-	-	-	-	-	-	-	-	-	O N	-	-	Low power Charging Mode
Standby	O N	O N	-	O N	O N	O N	-	O N	-	O N	O N	0 N / _	-	On Orbit No Contact
в-аот	O N	O N	-	O N	O N	O N	-	O N	-	O N	O N	0 N / 0 N	-	Contact to G/S
3 A x is	O N	O N	O N	O N	O N	O N	O N	O N	O N	O N	O N	0 N / _	-	On Orbit
Stability	O N	O N	O N	O N	O N	O N	O N	O N	O N	O N	O N	ON/ON	-	Contact to G/S

Power Budget and Power Analysis PiceSat Project of

Component	Power	DT cycle	Ave. PW	ve. PW(W	Duty cycle	Ave. PW	Ave. PW	DT cycle	ve. PW(W)	
	(W)		Contact	No Contact		Contact	No Contact		No Contact	
Payload										
MEMS sensor	0.100	100%	0.100	0.100	100%	0.1	0.1	0%	0.000	
TT&C										
UHF FM Contact	2.000	7%	0.140	0.000	7%	0.140	0.000	0%	0.000	
UHF FM Standby	0.200	93%	0.186	0.200	93%	0.186	0.200	0%	0.000	
VHF CW Tx	0.400	30%	0.120	0.120	30%	0.120	0.120	30%	0.120	
VHF CW Standby	0.100	70%	0.070	0.070	70%	0.070	0.070	70%	0.070	
ADCS										
Momentum wheel	0.630	30%	0.189	0.189	0%	0.000	0.000	0%	0.000	
Magnetic coils	0.333	60%	0.200	0.200	60%	0.200	0.200	0%	0.000	
Magnetometer	0.175	30%	0.053	0.053	30%	0.053	0.053	0%	0.000	
Gyro	0.600	40%	0.240	0.240	0%	0.000	0.000	0%	0.000	
Slave CPU	0.072	100%	0.072	0.072	100%	0.072	0.072	0%	0.000	
Coarse Sun Sensor	0.100	100%	0.100	0.100	100%	0.100	0.100	0%	0.000	
OBMU										
CPU	0.072	100%	0.072	0.072	100%	0.072	0.072	100%	0.072	
SRAM	0.230	100%	0.230	0.230	100%	0.230	0.230	100%	0.230	
EPS										
Conversion Loss(+12V)	0.160	100%	0.160	0.160	0%	0.000	0.000	0%	0.000	
Conversion Loss(+5V)	0.326	100%	0.326	0.326	100%	0.326	0.326	100%	0.326	
Conversion Loss(-5V)	0.038	100%	0.038	0.038	100%	0.038	0.038	100%	0.038	
Distribuitoin Loss	0.180	100%	0.180	0.180	100%	0.180	0.180	100%	0.180	
Total	5.416458		2.475625	2.349625		1.886625	1.760625		1.036125	
		Norm	al Mode		Initinal Mode B-dot			Safe Mode		

Average Power Generation: 2.535W

Momentum Wheel

Specification

Max. Wheel Momentum : 0.01 Nms Max. Wheel Torque : 0.00001 NmMax. Wheel Speed : 4000 rpm

Mechanical/Power

Mass : 300 grams (added a control box) Size : 46 dia. 82 height mm Housing : Aluminum (AL 7075) Power Supply : 12-24 VDC Power consumption : 0.6 W

Control Mode and Simulation

Standby Mode

- **Sensor : Magnetometer**
- **Actuator : Magnetic Coils**
- Control Law : B-dot Control

Three-axis Mode

Sensor : Magnetometer, Gyro, **Coarse Sun Sensor Actuator : Magnetic Coils, Momentum Wheel Control Law : B-dot Control, Momentum Wheel Control**, Momentum Dump Control, **Pointing Control**

Procession in The Loop

- >PACE is a three-axis stabilized pico-satellite.
- ➢ The design of three-axis stabilization has been conducted through component development and a hardware in the loop simulation.
- ➢MEMS coarse sun sensors and temperature sensors are designed and fabricated, ready for test and integration.
- >Detail analyses on each subsystem of the PACE have been conducted.

Thanks for your attention !