Michigan Multipurpose MiniSat

M-Cubed

Kiril Dontchev

Summer CubeSat Workshop: 8/9/09
Michigan NanoSat Pipeline

Inputs
- U of M Ideas
- Innovative technology
- Entrepreneurial thought

Outputs
- Science Papers
- Flight Heritage
- Entrepreneurial outcomes
- Educational experience
- U of M Exposure

Processes:
- Fast Feasibility Study
- Idea, Technology, & Facility Inventory
- Concept design and Proposal
- Design, Build, & Test
- Spacecraft & Mission Ops
M-Cubed Overview

• Develop the first generation S3FL CubeSat to:
 1. Cultivate S3FL capability to develop, build, and operate a CubeSat system.
 2. Promote development of S3FL students through an interdisciplinary design, built, test environment.
 3. “Roll your own” subsystems to image the Earth’s surface in the visual spectrum

• With the success of this first CubeSat system, future missions can encompass more complex payloads while still building upon S3FL heritage designs.
Baseline Design

- **Payload**
 - uEye CMOS 1.3 MP Camera Payload
 - Toradex Colibri PXA270 Processor
- **C&DH**
 - Atmega 164P Microcontroller
- **Telemetry**
 - Analog Devices 7020-1 Tx/Rx
 - 13.5 & 65 cm Antennas
- **ADCS**
 - Passive control with permanent magnets & hysteresis material
- **Power**
 - Emcore ATJ solar cells
 - Li-Ion 3.7 V 2.2 A-hr
- **Structures**
 - Custom design compliant with CubeSat specifications
- **Harness Interface**
 - Custom Header
Schedule

2009

<table>
<thead>
<tr>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>IST #1</td>
<td>IST #2</td>
<td>CDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2010

- **Subsystem Test & Integration**
- **EDU Refinement**
- **FU Production**
- **FU Qualification**
- **Launch & Ops**

Key Points:

- **Goal of having subsystem integration complete by end of Summer**
- **Awaiting NASA BAA for a educational CubeSat launch opportunity in summer 2010**
Personnel

• Expanded team to include new students to carry on knowledge following graduation of leads

• 36 undergrads + 4 graduate students involved
Payload Overview

• Design, validation, integration and testing of a system to:
 – Properly focus incident light
 – Trigger CMOS camera
 – Autonomously save image
 – Integrate with the Command and Data Handling subsystem
• IDS-UI-1646LE-C Color CMOS Camera
 – Resolution: 1280x1024 pixels
 – Pixel Size: 3.6x3.6 μm
• Plano Convex Glass Lens (12 mm Focal Length)
• Colibri Toradex PXA270
Completed Payload Testing

- **Modulation Transfer Function (MTF) Quality**
 - Method to quantify image resolution
 - Defines a ‘good’ picture
 - 50% MTF ~60 line pair/mm

- **Rotation Effects**
 - Used rate table to quantify blurring
 - Negligible blurring effects for spin rate of 7°/sec

- **Vacuum Survivability**
 - Making sure camera survives thermal vacuum environment

Resolution test image (top) and corresponding MTF plot (bottom)
Passive Attitude Control

- Passive magnetic attitude control system
 - Permanent magnet
 - Aligns camera axis with local magnetic field
 - Hysteresis materials
 - Dampens angular velocities
- Justification over active control system
 - No power consumption
 - Less mass
 - Mission requirements can be fulfilled without full attitude determination
- Heritage on Earth-imaging missions
 - University of Tokyo: XI-IV ~ 4 years
 - University of Tokyo: XI-V ~ 2 years
 - University of Louisiana: CAPE-1 ~ 6 months
- Materials
 - Magnet – Alnico 5
 - Hysteresis – HyMu 80
Electrical Power System

- Emcore ATJ solar cells
- Lithium ion battery
 - 3.7 V, 2.2 A-hr Panasonic 18650 cell
- Direct energy transfer topology
- Buck-boost DC-DC converters for regulation
 - TI TPS63000 series chips
- LTC2309 ADC for health telemetry data
Command and Data Handling

- Flight Computer: Atmel 164P Microcontroller
- Prototype Board Operational
 - Real Time Clock, Watchdog Timer, SPI Communication, EEPROM Storage, Radio Transmission, USART Communication

STK500 Demoing I2C
Atmel 32AP7000. Same line as 32AP7002. Actual dimensions: 12 x 12 mm
Telemetry

• AD7020-1 Tx/Rx Radios
 – Transmit@430 MHz
 – Receive@ 140 MHz
• Spring Steel Antennas
 – Length 1 16.5 cm(430 MHz)
 – Length 2 65 cm(140 MHz)
• Sharing Umich Ground Station resources with RAX
• AX.25 Transmission Protocol
Operations SW Beta Images

Start of a pass

Time synchronized, health updated
Solar Panel Development

• Develop in-house solar panel manufacturing capabilities
• Manufacturing process tested using expendable cells
• Final panels to include
 – Emcore ATJ cells
 – 0.031” PCB backing
 – NuSil space-grade silicone adhesive
HAS Update

• Conducted 4 successful Balloon flights during summer
• Developed reliable, redundant tracking
 – AeroComm (900 MHz)
 – TNC-X / Radio (Amateur Radio)
 – MicroTrak (APRS)
 – Cellphone tracker (Cell Network)
• Successfully demonstrated 2-way communication and In-flight Cut Down
• Flew Radio Interference Survey Instrument