CubeSat History

- First conceptualized in 1999 by Stanford and Cal Poly
- Driven by need for student opportunities
- Cal Poly’s current role
 - Provide standard interface and system for deploying CubeSats (P-POD)
 - Maintain the CubeSat Standard
 - Coordinate launch opportunities
 - Networking ground stations around the world dedicated to CubeSat operations.
Some Data

- 18 CubeSats in LEO (32 Launched)
 - 6 in non-P-POD launches
 - Toronto
 - ESA (SSETI Express)
 - Japan
 - Experiments include:
 - Astrobiology (GeneSat)
 - Component Testing (CP-1-3, Boeing, ION, others)
 - Ionospheric Research (QuakeSat)
 - Pico-inspector testing (Aerospace Corp.)
CubeSat History

Eurokot: June 30, 2003

6 CubeSats - 2 Cal Poly P-Pods

SSETI Express: October 27, 2005

3 CubeSats
CubeSat History

M-V-8:
February 22, 2006

1 CubeSat: CUTE-1.7

Dnepr 1 (Belka): July 26, 2006
(Launch Failure)

14 CubeSats - 4 P-PODs
Minotaur (TacSat2): Dec 06

• **1st U.S. Launch of CubeSats**

• *Payload: GeneSat-1*
Dnepr 2 (EgyptSat)

- April 16, 2007
- 7 CubeSats
Boeing’s CubeSat TestBed 1 ("CSTB1")

CSTB1 Features
- Ultra-Low Power Imager and MCU for Image Processing
- Coarse Attitude Sensors & Control
- High Capacity Li-ion Batteries
- SOA Triple Junction Solar Cells
- Selected Redundancy for Key Subsystems

Operational Summary
- >100% of Mission Goals Met!!
- More Than 300,000 Data Points and 5.5 MB of Data Downloaded

STATUS: Launched April 2007, FULLY OPERATIONAL!!

CSTB1 Solar Panel Power

CSTB1 Temperatures

CSTB1 Temperature
The Aerospace Corporation
AeroCube-2 April 2007 DNEPR Flight Results

Mission Goals
Demonstrate “Ring Bus” power system
1st Attempt for long duration PICO/Cubesat
Demonstrate 9” pillow balloon for deorbit
Certify local ground station in El Segundo, CA
Photograph earth and other Cubesats

Mission Results
Negative power balance ⇒ mission ended in 24 hrs
Photographed earth and Cal Poly Cubesat
Downlinked SOH data for first 12 hrs
Certified local ground station (good link & tracking)
Did not inflate balloon due to power system failure

Aerocube-2 photograph of the island of Madagascar from 400 mile orbit altitude and 105 seconds after ejection.

Aerocube-2 photograph of Cal Poly Cubesat 65 seconds after ejection.

Aerocube-2 Temperature Data (First 12 hrs)
Why Do We Need CubeSats?

Skills and Experiences

• Team-building
• Project management
• Building to flight standards
• Integration and testing
• Overseeing a complete mission lifecycle
CubeSat Community Purpose

- 80+ universities, private companies, government organizations building picosatellites
- Program designed so that students can participate in entire life cycle of a space mission
- Use concepts of standardization and ridesharing to meet objectives
The CubeSat Standard

- Shape and size (10 cm cube)
- Mass (up to 1 kg)
- Interface to P-POD
 - Rails
 - Access ports
- Materials and tolerances
- Operations
 - Deployables
 - Communication
- Different configurations possible
Poly Picosatellite Orbital Deployer

- Standard deployment system
 - Tubular frame
 - Spring assisted ejection
 - Payload of 3 single CubeSats

- P-POD mission objectives
 - Protect LV and primary payload
 - Safe/reliable deployment
 - Compatibility with many LV
Standard = Flexibility

• Pre-qualified P-POD and LV interfaces
 • Maximize number of compatible missions
 • Reduce integration time
 • Minimize NRE and associated costs
 • Repetition minimizes design, analysis, and testing for subsequent missions

• Possible to transfer spacecraft to a different LV if launch is delayed or canceled

• Spacecraft Development Without Firm Launch
 • Standard Independent of Launch Vehicle
 • Fast Response to Launch Opportunities
Current Secondary Launches

Launch Opportunity

Launch Opportunity

Launch Opportunity

Launch Opportunity

Spacecraft Developer

Spacecraft Developer
Flexible Secondary Launches

- Launch Opportunity
- Launch Opportunity
- Launch Opportunity
- Launch Opportunity

P-POD (Standardized)

- Spacecraft Developer
Distribution of Costs

• Multiple manifest
 • Distribute costs over many customers

• Multiplexing spacecraft
 • Deploy multiple spacecraft per mechanism

• Repetition
 • Use identical, standard systems not mission specific
Upcoming Launches

- **Falcon-1 LV (RazakSat)**
 - March 2008
 - 2+ P-PODs
 - Accepting apps

- **Minotaur LV (TacSat3)**
 - March 2008
 - 2 P-PODs
Upcoming Launches

- **Atlas V**
 - (multiple)
 - 2009 onward
 - Accepting apps

- **Dnepr 3**
 - 2009
 - Accepting apps
Other Compatible Launch Vehicles

From existing...

...to tested...

...to concepts.
Suggestions: CubeSat Construction

- It took us 2 years to build CP1, 1.5 years for CP2, CP3, 6 months for CP4
- Read the specification carefully

- The “top” of the CubeSat in the spec drawing actually goes in the P-POD first
- Contact us with questions or concerns
Take Fit Checks Seriously

- Fit checks are important
- Go into fit checks and reviews with highest fidelity hardware possible
Test Like You Fly, Fly As You Test

- Do not cut corners during testing
- Test everything exactly as it will fly
- Don’t make last minute changes
- Repeatable Procedures
Test Early and Often

• Test carefully/methodically
• Understand different stages
 • Prototype
 • Qualification
 • Acceptance
• Expect worst case
Integration

- Delivery expected to Cal Poly 2-3 months prior to launch
- Last tests are performed to ensure proper dimensioning and construction
Integration

- Satellites are integrated into PPOD, run through acceptance tests
- Last minute battery recharging and diagnostics can be performed
- Shipped to launch site
Current Goals

• Increase US launch capability
 - Atlas V, Minotaur, Falcon, others
• Increase number of Developers
• Promote CubeSats as a viable platform for low-cost missions
• Continue to educate students
RESULTS

From Design

To Spacecraft
RESULTS

To Testing

Vibration

To Integration

Thermalvac

Clean Room
RESULTS

From Design To Launch And Operations

Ground Station
Accomplishments

• Within 8 years
 • 18 CubeSats in LEO (88% successful)
 • Successful coordination & launch of 22 satellites on foreign and US launch vehicles
 • Launching US as well as foreign spacecraft
 • Multiple launch opportunities
 • International earth station networking
CubeSat Lessons

- Start Simple
- Build on Experience
- Constantly recruit
- Document well
- TEST
- Keep planning ahead
- Network

- Be flexible
- Recruit from various fields
- Schools: Find industry partners
- Industry: Find scholastic partners
Questions?

Thank you to all of our Supporters

www.cubesat.org

Additional slides…