Space Environmental NanoSat Experiment (SENSE)

Capt Paul La Tour
SENSE PM
Overview

- Objectives, Organizations, and CONOPS
- Spacecraft Bus
- CTECS (Compact Total Electron Content Sensor)
- WINCS (Wind Ion Neutrals Composition Suite)
- CTIP (Compact Tiny Ionospheric Photometer)
- Interesting Mission Features
SENSE is SMC’s premier rapid development effort which will demonstrate the capability of NanoSats to perform space missions in an affordable and resilient manner.

- 15 Months ATP to SV delivery (July 2012), 27 Months ATP to launch (July 2013)

- The first AF NanoSat mission, designed to prove the OSS&E of the NanoSat class space vehicle for the war fighter
 - Pathfinder to determine if NanoSats are suitable as potential SSAEM follow-on
 - Delivers three first generation miniature sensors; WINCS, CTIP, GPS-RO.

- A “lights-out” ground architecture with leave-behind capability to fly the next minimally-manned satellite mission.

Photos of actual Flight Hardware

SV #2
Wind Ion Neutral Composition Suite (WINCS) Configuration

Compact Total Electron Density Sensor (CTECS)

1 Mb/s S-Band Radio, Diplexer and Encryption Module

Cubesat Tiny Ionospheric Photometer (CTIP)
SENSE Sensor History (Evolution)

- **C/NOFS**
 - Weight: 3 kg
 - Power: 10 Watts

- **SENSE**
 - Weight: 0.2 kg
 - Power: 1.5 Watts

- **FORMO-SAT3**
 - Weight: 7 kg
 - Power: 23 Watts

- **CORISS**
 - Weight: <1 kg
 - Power: 2.5 Watts

- **CTIP**
 - Weight: 2.5 kg
 - Power: 23 Watts

- Smaller Satellites → Bigger Roles
Schedule

<table>
<thead>
<tr>
<th></th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
<th>FY13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Milestones</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Segment (XR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFP Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus Assembly & Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Orbit Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground Segment (SDTW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antenna Acquisition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop Ground Infrastructure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IA Certification</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPS Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Launch Segment (SDTW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Launch Coordination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Launch Integration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Analysis Segment (AFRL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Support Hardware/Software Prep</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Analysis & Validation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This is Rapid!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1.700M</td>
<td>$6.137M</td>
<td>$1.782M</td>
<td>$.899M</td>
</tr>
</tbody>
</table>

Multi-Segment Critical Path
- Factory Compatibility Test
- Interface with AFRL
- Common Ground Architecture
- ORS Enabler

- Critical Path–Flight Software
- Critical Path–CGA Software
- Critical Path–Pre-Processing Software

- Launch Est Jun13
- Final Report

This is **Rapid!**

15 Months
SENSE Organizations

Demo Stakeholder
SENSE Demo Lead
Demo Stakeholder

SMC

Space Segment (XRFF)
Launch Segment (SDTD)
Ground Segment (SDTO)
Data Analysis & Mission Validation (RVBX)

DWSD
Ground Segment

BACKGROUND:
- Current satellite C2 systems utilize 24/7 ground monitoring; SENSE striving for “lights out” capability
- Kirtland RSC Operations Center developing capability to connect to distributed sites from single terminal
- FY 2013-14 SENSE demonstration period with option to extend ops 1-year

Contribution to Greater Capability:
- Demonstrate a distributed architecture to support small satellite missions including “lights-out” (unmanned) operations
 - Established conductivity between Air Force mission operation center, Navy communications, and joint service command network
 - Define architecture for pre-processing of data and automatic distribution
 - Develop ground architecture with “leave behind” capability for future CubeSat programs
 - Operations Center improvements enabling flexible, distributed architectures
 - Platform for operator training

Future Improvements:
- Automated satellite command and control
 - CubeSats offer potential for inexpensive distributed data collection through greater automation
 - Increase contact frequency of CubeSats on operational networks proves operational theories
 - Drive development of side-by-side operations with larger satellites on same contact network
 - Peacetime means of maintaining operator proficiency
SEM Matrix

Space Environment Measurement Matrix

<table>
<thead>
<tr>
<th>Measurement</th>
<th>DMSP Polar Orbit, Fixed LT</th>
<th>C/NOFS Equatorial Orbit, All LT</th>
<th>SENSE Instruments, All LT</th>
<th>SENSE + Ground Processing</th>
<th>DMSP, C/NOFS, SENSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auroral Particles</td>
<td>G</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>G</td>
</tr>
<tr>
<td>Auroral Energy Deposition</td>
<td>G</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>G</td>
</tr>
<tr>
<td>Auroral Imagery</td>
<td>G</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>G</td>
</tr>
<tr>
<td>Auroral Boundary</td>
<td>G</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>G</td>
</tr>
<tr>
<td>Energetic Ions</td>
<td>Y - L</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Y</td>
</tr>
<tr>
<td>Medium Energy Particles</td>
<td>G</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>G</td>
</tr>
<tr>
<td>High-Lat Ionospheric Scintillation</td>
<td>Y - A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>G</td>
</tr>
<tr>
<td>Low-Lat Ionospheric Scintillation</td>
<td>Y - OA</td>
<td>G</td>
<td>Y - O</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>High-Lat In Situ Electric Field</td>
<td>G</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>G</td>
</tr>
<tr>
<td>Low-Lat In Situ Electric Field</td>
<td>Y - O</td>
<td>G</td>
<td>Y - OT</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>High-Lat Electron Density Profile</td>
<td>Y - A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Y</td>
</tr>
<tr>
<td>Mid-Lat Electron Density Profile</td>
<td>Y - OA</td>
<td>N/A</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Low-Lat Electron Density Profile</td>
<td>Y - OA</td>
<td>G</td>
<td>Y - O</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Neutral Density Profile</td>
<td>R</td>
<td>Y - AT</td>
<td>Y - AT</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>In Situ Neutral Winds</td>
<td>R</td>
<td>Y - AT</td>
<td>Y - AT</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>High-Lat Geomagnetic Field</td>
<td>G</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>G</td>
</tr>
<tr>
<td>Low-Lat Geomagnetic Field</td>
<td>Y - O</td>
<td>G</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>In Situ Plasma Temperature</td>
<td>G</td>
<td>G</td>
<td>Y - T</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>In Situ Plasma Fluctuations</td>
<td>G</td>
<td>G</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

Legend:
- **G**: Good measure of parameter
- **Y**: Measurement made, but with limitation(s)
- **R**: No measurements made to address this parameter
- **N/A**: Does not apply in specified orbit
- **O**: Sub-optimal orbital inclination
- **A**: Orbit altitude
- **T**: Technology – instrument has limited or unproven capability for this parameter
- **L**: Instrument covers a limited range of the parameter
SENSE Bus

- Very capable and low cost bus, considered infeasible only 4 years ago
 - Three axis stabilized; four reaction wheels
 - Two star cameras and GPS
 - Dosimeter included into Bus design
- 1 Mb/s Downlink & 4 kb/s Uplink S-Band Encrypted transceiver
- 35 watts generated orthogonal to sun
 - 9.5-10.5 watts average on orbit power (orbit dependent)
Space Vehicle Mass (Worst Case SV #2)
Positive Energy Balance

Positive Energy balance every orbit

- Solar Power Actual UTJ (W)
- Payload load (W)
- Bus load (W)
- Battery SOC (%)
- Payload Capability (W)

• SV has the ability to transmit 15 min/orbit
• Enables latency requirements satisfaction for SEM mission
CTECS- Radio Occultation Sensor

- **CTECS is a GPS occultation sensor**
 Primary data product: line-of-sight TEC to all GPS satellites in view for ingest into ionospheric models
 Secondary data product: L-band scintillation observations
- **Antenna is dual patch**
 - 1557 MHz and 1227 MHz
 - A Low-Noise-Amplifier (LNA) is placed between antenna and receiver
- **L1, L2, L2c signal tracking capability**

Measures:
1. Delay of signal between SENSE and the GPS transmitter to extract Total Electron Count in the atmosphere
2. Atmospheric Scintillation
Compact Tiny Ionospheric Photometer (CTIP)

Objective: Gather data to characterize the ionosphere through the natural decay rate as seen in recombination of O^+ ions and electrons

- Atomic Oxygen ions constitute the primary ionospheric species in the F-region
- In the night-time F-region ionosphere
 - 135.6 nm photons are emitted spontaneously
 - from the recombination of atomic oxygen ions
 - $O^+ + e^- \rightarrow O \ (5P) + h\nu_{135.6}$

- $O^+ \text{ and } e^-$ are in equal number and 135.6 nm emission is proportional to the path integral of $[O^+]$ squared

Measures:

1. Ultraviolet Airglow at 135.6 nm
Wind Ion Neutral Composite Suite (WINCS)

Objective: Acquire simultaneous co-located, in-situ measurements of atmospheric density, composition, temperature and winds.

Measures:
1. Neutral winds & temperature
2. Ion-drift & temperature
3. Ion & Neutral composition
4. Plasma Composition
WINCS Theory of Operation

• WTS/IDTS: Ionize incident air stream to measure the angular distribution at many angles simultaneously while scanning energy in time
• IMS/NMS: Time of Flight mass spectroscopy
Teledyne Micro-Dosimeter

Objective: Provide radiation dosage for measurement and to correlate system performance with exposure

- First compact microcircuit that provides a repeatable measurement of radiation dose and dose rate over a wide range of energies
- Enables routine monitoring of spacecraft radiation environment
- Custom microchip in a small footprint package for low weight and power
- Correlates environmental models and ray-tracing analyses with real in-flight measurements

Technical Specifications
- 14 uRad Dose resolution
- Survivability to 40 kRad
- Class K space qualified
- Mechanical dimensions: 3.6 cm x 2.5 cm x 0.1 cm
- 20 grams
- 10 mA, 13 Vdc to 40 Vdc
- 3 DC linear outputs
- 1 Pseudo Log
- 100 kRad total count
- Test Input bypasses silicon detector for circuitry detection
- Volatile count retention
- Updates every 30 seconds
Mission Data Products (TPMs)

<table>
<thead>
<tr>
<th>Environmental Data Record (EDR)</th>
<th>Parameter</th>
<th>Requirements</th>
<th>Current Value at DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron density profile</td>
<td>Horizontal cell size</td>
<td>50 km, 10 km</td>
<td>CTECS</td>
</tr>
<tr>
<td></td>
<td>Vert Cell Size</td>
<td>10 km, 3 km</td>
<td>WINCS</td>
</tr>
<tr>
<td></td>
<td>Vert coverage</td>
<td>90 km to Sat Alt, 90 km to 1600 km</td>
<td>CTIP</td>
</tr>
<tr>
<td></td>
<td>Range Ne</td>
<td>2.5E4 to 1E7 e/cm³, 1E4 to 1E7 e/cm³</td>
<td>SENSE</td>
</tr>
<tr>
<td></td>
<td>Range VTEC</td>
<td>3 to 200 TECU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sigma Ne</td>
<td>Greater of 1E4 /cm³ or 5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sigma TEC</td>
<td>Greater of 3 TECU or 30%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sigma HmF₂</td>
<td>20 km, 5 km</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sigma NmF₂</td>
<td>20%, 10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sigma NmE</td>
<td>20%, 5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Latency</td>
<td>90 minutes, 15 mintues</td>
<td></td>
</tr>
<tr>
<td>Scintillation</td>
<td>Horizontal Cell Size</td>
<td>100 km, 25 km</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amp. index (S4)</td>
<td>0.1 to 0.5, 0.1 to 1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phase Index (σₚ)</td>
<td>0.1 to 20 rad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uncertainty S4</td>
<td>0.1, 0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uncertainty σₚ</td>
<td>0.1 rad, 0.1 rad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Latency</td>
<td>90 minutes, 15 mintues</td>
<td></td>
</tr>
<tr>
<td>Ions</td>
<td>Ion species</td>
<td>none, O₂⁺, NO⁺, O⁺, H⁺, He⁺</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composition discrimination</td>
<td>none, 5% of Ne</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drift velocity</td>
<td>none, Objective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Density</td>
<td>none, Objective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Density fluctuations</td>
<td>none, Objective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy</td>
<td>none, Objective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
<td>none, Objective</td>
<td></td>
</tr>
<tr>
<td>Electric Field</td>
<td>Electric field</td>
<td>none, Objective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wind speed</td>
<td>none, Objective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Density</td>
<td>none, Objective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
<td>none, Objective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electric field</td>
<td>none, Objective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wind speed</td>
<td>none, Objective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Density</td>
<td>none, Objective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
<td>none, Objective</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- 1. 100% E layer, 50% F layer bottom side, 30% F layer near peak, 15% topside.
• CTIP vehicle reliability is estimated to be 0.7312 at 1 year.
 • 5 Bus Drivers are:
 • USB Radio (0.950)
 • IRB (0.954)
 • PMAD (0.969)
 • RWA controller (0.975)
 • +Y Body panel (0.980)
 • Payload Driver
 • CTIP (0.960)
Summary

- **SENSE** is a rapid development effort seeking to demonstrate affordable access to space for future operational CubeSat missions across SMC
 - Develop best practices for operational CubeSat/NanoSat procurement, development, test, and operations

- **The first CubeSat mission to develop a flexible, distributed ground architecture supporting small satellite missions**
 - Two one-month ops phases consisting of 24/7 operations using commercial and distributed joint service command antennae network for <90 minute data latency

- **Mature CubeSat Bus and Sensor component TRLs**
 - CubeSats drives down future costs for inexpensive distributed data collection systems through a common CubeSat Bus ($300K per bus)
 - The common Bus becomes a platform for both operational use and future sensor development efforts
 - Three first generation miniature sensors; WINCS, CTIP, GPS-RO

- **Mission data will improve current and future space weather models and demonstrate CubeSats’ utility for operational weather requirements**